Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chimpanzee brains are asymmetrical in key areas and their handedness reflects it

06.12.2004


The hippocampus skews ’right,’ especially in males, plus the righty-lefty distinction may go back 5 million years

New MRI-based studies present more evidence that the brains of chimpanzees are human-like in terms of the relationships among brain asymmetry, handedness and language, according to research undertaken at the Yerkes National Primate Research Center in Atlanta. Understanding our evolutionary cousins helps us to understand what makes us human. Two related reports appear in the December issue of Behavioral Neuroscience, which is published by the American Psychological Association (APA).

In the first study, Hani Freeman, BA, Claudio Catalupo, PhD (also with Georgia State University), and William Hopkins, PhD (also with Berry College), took magnetic resonance images of 60 chimpanzees to measure the anatomy of two key structures in their brains’ limbic systems, an early-evolving central region that includes the hippocampus and amygdala. In the MRI pictures, the hippocampus (which regulates learning and consolidation of spatial memory, mood, appetite and sleep) was asymmetrical, its right half significantly larger than its left. This asymmetry was bigger in males. These findings are consistent with studies of human hippocampi, which are also asymmetrical. At the same time, just as in humans, the amygdalas of the chimps were symmetrical.



Studies such as this confirm that human and chimp brains are not only asymmetrical, but asymmetrical in the same way. The findings echo previous looks at the non-limbic parts of chimpanzee brains, which also appear human-like in their patterns of asymmetry. This fact, especially if studied in the context of functional behaviors that reflect asymmetries, may help scientists get a better fix on the evolution of the limbic system in all primates, including humans.

Says Hopkins, "The limbic system asymmetries advance the position that asymmetries are fundamental aspects of the nervous system of all primates, and apply to more primitive systems in the brain." The asymmetries influence behavior. Given the new findings about chimps and previous findings that the limbic system affects human facial expression and emotions, it now seems more clear why across primates, says Hopkins, the left half of the face – controlled by the right side of the brain -- is more emotionally expressive. In addition, a right-dominant hippocampus would explain apes’ well-developed spatial memory. Again, that parallels how the right hippocampus in humans is involved in spatial memory.

In a second study, Hopkins and Cantalupo report the first-ever evidence of an association between hand preference and asymmetries in three areas of the brain cortex in chimps. Observing 66 chimps, they correlated asymmetries in brain anatomy with three measures of handedness: Simple reaching (which hand chimps used to pick up a raisin thrown into the cage), two-handed feeding (which hand chimps used to feed themselves chunks of fruit while holding the whole piece, such as a banana, in the other hand), and a measure of coordinated bimanual actions (which hand chimps used to fish peanut butter from a plastic tube with a finger).

Left-handed and right-handed chimps differed relative to the asymmetries in two primary motor areas, the planum temporale and the precentral gyrus. Say the authors, the results "challenge the long-held belief that the neurobiological substrates for handedness are unique to humans." Just as in humans, neuroanatomy governs whether a chimp becomes a lefty or a righty. Hopkins points out that chimps are also strongly right-handed for manual gestures and throwing, a clue to the origins of more general right-hand dominance in both chimps and humans.

This second study also confirms that handedness goes way back. Its findings, say the authors, "suggest that the neurobiological basis for handedness evolved as early as five million years ago and emerged independent of systems associated with language and speech."
The findings mesh with other recent human evidence that handedness has nothing to do with asymmetry in language-related cortical areas. The Yerkes chimps showed no links between handedness and the classic left-side "language" areas. Hopkins says, "Many studies document a correlation between handedness and lateralization, but these are only correlations. It doesn’t mean that being right-handed causes a person to be left-hemisphere dominant for language, or vice versa. Rather, these two abilities might be assigned to the same sides but independently of each other." The findings about chimps support the hypothesis that a third, undiscovered "sidedness" factor may account for both handedness and language-related dominance.

To further understand language functions relative to brain asymmetries, the Yerkes team will soon begin using another brain-imaging technology, PET scans (positron emission tomography), to evaluate brain regions that are active when chimpanzees manually gesture and/or vocally communicate.

Pam Willenz | EurekAlert!
Further information:
http://www.apa.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>