Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cracking the Genomic Code: Gene Decoding Revealed at Atomic Level

06.12.2004


The critical decoding structure produced when modified nucleosides enable tRNA to decode by wobble recognition. Only the decoding region of a 50,000+ atom structure of the ribosome (small subunit) is shown. The modified nucleoside platform (orange) that stabilizes the codon-anticodon interaction, and the modified nucleoside that wobbles (green) are shown. The structure was determined at the atomic resolution of -3 angstroms (3 X 10 –10 meters).


A recent finding by a North Carolina State University biochemist advances the fundamental biology of how genetic information, encoded in DNA, is decoded for the production of proteins.

Dr. Paul F. Agris, professor of biochemistry at NC State, and academic colleagues from England and Poland show concrete evidence in favor of the 1966 “Wobble Hypothesis” offered by Francis Crick, the co-founder of the DNA molecule and its double-helix structure, and Agris’ own “Modified Wobble Hypothesis” posed in 1991. The scientists used x-ray crystallography of the cell’s protein-manufacturing unit, the ribosome, to provide a visual snapshot of the decoding process.

The research is published in the December 2004 edition of Nature Structural and Molecular Biology.



The Wobble Hypothesis was Crick’s attempt to make sense of how the cell decodes the genetic information of DNA – the molecule that constitutes all the genetic information in a cell – and then, from that information, makes biologically active proteins, Agris said.

DNA has 61 three-letter codes that are translated by transfer RNA (tRNA) into amino acids; proteins are made of amino acids. But there are only 20 natural amino acids. Squaring the disparity between the number of codes and the number of amino acids – there are three times as many codes as there are amino acids – became a hurdle for Crick and other early geneticists, Agris explained. Crick attempted to clear this hurdle with the Wobble Hypothesis. He based this theory on the first report of a tRNA molecule’s chemical structure discovered by Robert Holley in 1963.

Normally, RNA molecules are composed of four nucleosides: adenosine, guanosine, cytosine and uridine (A,G,C,U). But the tRNA molecule Holley studied included a modified nucleoside called inosine (I), Agris says. Seeing this inosine in an important area of the tRNA molecule – an area that read the three-letter DNA codes when the cell synthesizes proteins – led Crick to believe that a single tRNA used inosine to read more than one code, and that therefore the 61 codes were decoded by fewer than 61 tRNAs.

As an example, Agris used the amino acid alanine, which has four codes. Crick’s hypothesis would allow that only two tRNA molecules could be capable to decode all four alanine codes. Using the modified nucleoside I in place of A, G, C or U, one tRNA may be able to read three codes, effectively “wobbling” the reading. Twenty-five years after the Wobble Hypothesis, Agris proposed his Modified Wobble Hypothesis. It stated that modified nucleosides other than inosine would in some cases expand tRNAs ability to translate codes by wobbling to greater numbers of three-letter codes, whereas other modified nucleosides would restrict wobble to only one or two codes.

Now, in the recent paper, Agris and colleagues prove Agris’ alteration to Crick’s hypothesis was correct: Cellular modification of tRNA alters chemistry and structure in a manner critical for tRNA to decode more than one three-letter code. Using atomic-level resolution – in which researchers can distinguish atom from atom – and working with a tRNA specific for the amino acid lysine, Agris and his colleagues show modified nucleosides enabling tRNA to decode genomic information on the ribosome, the cell’s protein synthesis machinery.

Specifically, it shows modifications enabling the decoding of two codes. One modification acts like a platform on which decoding takes place, and the other allows a novel chemical and physical interaction to occur between tRNA and the code, Agris said. “This is the first visualization that modifications are critical for decoding the genome through wobble,” he said.

Agris says that 15 to 20 percent of tRNAs in all organisms require modified chemistries in order for codes to be properly read and protein synthesis to be successful. “An understanding of how modified nucleosides enable and improve wobble recognition of the three-letter codes for protein synthesis opens the possibility of using modified nucleosides to expand the cells’ use of tRNA to make new proteins, or in new ways to target the protein synthesis machinery in pathogens,” Agris said.

Mick Kulikowski | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>