Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon scientist develops way to deliver promising genetic tool into living cells

06.12.2004


By exploiting an HIV protein that readily traverses cell membranes, Carnegie Mellon University scientists have developed a new way to introduce a gene-like molecule called a peptide nucleic acid (PNA) directly into live mammalian cells, including human embryonic stem (ES) cells. The work, published online December 2 in Chemical Communications, holds considerable promise in genetic engineering, diagnostics and therapeutics.

"Our results show that PNAs could be effectively delivered into mammalian cells without requiring delivery vehicles," said Danith Ly, an assistant professor of chemistry in the Mellon College of Science (MCS) at Carnegie Mellon. Ly worked with leading author and graduate student Anca Dragulescu-Andrasi on this research.

Until now, getting PNAs into living cells has been difficult. While other laboratories have developed ways to shuttle PNAs into cells, these methods remain largely ineffective and limited to small-scale experimental setups, according to Ly. "We found that our modified PNAs were not only taken up by cells, but they also were localized predominantly in the cell nucleus, a specialized compartment in the cell where messenger RNAs are made," Ly said.

Messenger RNA (mRNA), the genetic information that is translated into proteins, is the target of an emerging field called antisense therapy. "We found that we could modify PNAs so that they bind sequence-specifically to mRNA," Ly said. By binding to specific mRNAs, these agents could dampen the production of select disease-causing proteins, he added.

First reported in the early 1990s, PNAs are small synthetic molecules in which a protein-like backbone is combined with the nucleobases found in DNA and RNA. These nucleobases enable PNA to bind to DNA and RNA in a complementary, highly specific manner. Because the cell machinery cannot recognize the unnatural backbone of PNA, it fails to break down this structure, making PNAs very stable, long-lived molecules.

To enable the PNAs to enter cells, Ly modified the PNA backbone so that it contained a short sequence of chemical groups inspired by a region of the HIV-1 virus called the Tat transduction domain, which normally regulates gene expression. The modified PNAs are called GPNAs because they contain guanidinium functional groups. Ly found that GPNAs, in addition to their superior cell uptake properties, could be designed to bind sequence-specifically to RNA, with binding affinity and selectivity rivaling that of PNA. Ly and his colleagues visualized the uptake of GPNAs into living cells by attaching them to fluorescent probes.

GPNAs could gain widespread use in genetic diagnostics, therapeutics and engineering, according to Ly. For instance, scientists could use this technology to quickly identify whether specific tissues contain a cancer-causing version of a gene and are pre-cancerous. Because they enter embryonic stem cells, GPNAs potentially could be used to control gene expression and direct what kinds of tissues these malleable cells ultimately become. By infusing GPNAs to block the translation of specific RNAs, researchers also could "down-regulate" the production of disease-related proteins. Scientists could use GPNAs to temporarily inhibit production of different regulatory proteins in cells, which could prove especially helpful in modeling diseases that involve multiple genetic mistakes occurring over time. Thus, this approach could help to tease apart the sequence of molecular events that lead to diseases such as cancer or diabetes in animal models.

Ly is currently extending his research to show that GPNAs are absorbed throughout the body in mice that receive these agents.

Lauren Ward | EurekAlert!
Further information:
http://www.cmu.edu/mcs
http://www.rsc.org/Publishing/Journals/cs/index.asp

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>