Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USC-led team of scientists recreates DNA-mending pathway in test-tube

03.12.2004


Finding could lead to new cancer drugs, more effective radiation treatments



One of five known DNA-repair mechanisms in cells has been completely analyzed and reconstituted in a test tube by an international collaboration of researchers led by scientists from the Keck School of Medicine of the University of Southern California. The team is the first ever to reconstitute this pathway, known as the nonhomologous end joining pathway, or NHEJ, and NHEJ is only the third repair pathway to be reconstituted in the laboratory. The findings were published in the December 3, 2004 issue of Molecular Cell.

Understanding how DNA repair works is critical to understanding the development of cancer, which often occurs when DNA is not properly repaired.


In addition, notes Michael Lieber, M.D., Ph.D., the Rita and Edward Polusky Chair in Basic Cancer Research at the Keck School who heads up the molecular genetics program at the USC/Norris Comprehensive Cancer Center and was principal investigator on this study, the ability to reconstitute the pathway has important practical implications.

"Now we can really test for drugs that will affect the pathway," he said. "For instance, one of the things this pathway is particularly good at is repairing radiation damage. When people get radiation treatment, both the normal and the tumor cells will use this pathway to resist the radiation. If we could inhibit the pathway regionally in or around the tumor, we could really make radiation dramatically more effective."

In order for the team to reconstitute the NHEJ pathway, which is found in all cells that are evolutionarily ’above’ yeast, they first had to purify all the proteins used to rejoin the double strands of DNA once they’ve suffered damage and are severed from one another. As it turned out, two of the seven proteins come from a class of polymerases that were discovered in 1999 by Myron Goodman, Ph.D., professor of molecular biology at the USC College of Letters, Arts and Sciences, who became an essential part of this research team. "Before this, no one knew what this class was good for," Lieber explains. "This is really the first solid indication of what two of these polymerases might do."

Knowledge of the details of the NHEJ pathway extends beyond its connections to cancer and radiation treatment, Lieber notes. "This pathway gets used not just for accidental damage, oxidative damage and radiation damage to DNA, but is also used in the immune system," he explains. "So the immune system would function less well without it."

Jon Weiner | EurekAlert!
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>