Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Common lineage suggested for viruses that infect hosts from all three domains of life

03.12.2004


Scientists at The Wistar Institute, working in collaboration with colleagues at the University of Helsinki, have discovered structural similarities among viruses that infect hosts from all three domains of life. These structural similarities suggest that the viruses, despite their genomic variations and differences in hosts, may have evolved from a common ancestor billions of years ago. The findings will be published in the December 3 issue of Molecular Cell.



Until recently, scientists have tended to view the viral universe as unrelated families of viruses, with little attention given to their similarities. "People tended to concentrate on a single type of virus," says Roger M. Burnett, Ph.D., senior author of the study and professor in Wistar’s immunology program. "It hadn’t been appreciated until a few years ago that there are great structural similarities among seemingly unrelated viruses."

The research builds on earlier work by Burnett and his colleagues, in which they determined the structure of a virus called PRD1 that infects bacteria. They found that it has remarkable structural similarities to human adenoviruses, which cause various diseases, including respiratory infections. Using data from their own and other laboratories, the researchers have created structure-based models to demonstrate structural similarities in the coats--proteins and architecture--among viruses that infect hosts from all three domains of life. The three domains are eukarya (animals, plants, and other higher order organisms); bacteria; and archaea (a recently described group of microorganisms that differ from bacteria and are commonly found in extreme environments like geysers, and alkaline, acidic or salty waters).


It is difficult to study viral evolution, Burnett says, because viruses live symbiotically with their hosts and adopt host-related traits. Instead of being inherited from a viral ancestor, these host-related traits may be picked up from the host or other microorganisms. For viruses that diverged from a common ancestor billions of years ago, and so have significant differences in genome size, genetic complexity, and host, structural similarities may be the only evidence remaining that indicates a shared lineage.

While viral lineage is in itself a question that interests scientists, research in this area may ultimately inform anti-viral drug discovery. Structural similarities in viruses may point to sites of enzymatic activity that could be targeted with drugs. For example, in two of the viruses studied, one vertex of the apparently symmetric coat is different and used for DNA packaging. With this knowledge in mind, researchers could explore whether human viruses with similar coat proteins also have a unique vertex devoted for DNA packaging. If so, new anti-virals could be developed to target this mechanism.

In addition to senior author Burnett, the other authors of the study are: Stacy D. Benson, Ph.D., formerly of Wistar and now an assistant professor of chemistry at Oklahoma State University, and Jaana K.H. Bamford, Ph.D., and Dennis H. Bamford, Ph.D., both of the University of Helsinki.

Funding for the research was provided by the National Institutes of Health; the Human Frontiers Science Program; the Commonwealth Universal Research Enhancement Program, Pennsylvania Department of Health; and the Academy of Finland.

Franklin Hoke | EurekAlert!
Further information:
http://www.wistar.upenn.edu

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>