Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Common lineage suggested for viruses that infect hosts from all three domains of life


Scientists at The Wistar Institute, working in collaboration with colleagues at the University of Helsinki, have discovered structural similarities among viruses that infect hosts from all three domains of life. These structural similarities suggest that the viruses, despite their genomic variations and differences in hosts, may have evolved from a common ancestor billions of years ago. The findings will be published in the December 3 issue of Molecular Cell.

Until recently, scientists have tended to view the viral universe as unrelated families of viruses, with little attention given to their similarities. "People tended to concentrate on a single type of virus," says Roger M. Burnett, Ph.D., senior author of the study and professor in Wistar’s immunology program. "It hadn’t been appreciated until a few years ago that there are great structural similarities among seemingly unrelated viruses."

The research builds on earlier work by Burnett and his colleagues, in which they determined the structure of a virus called PRD1 that infects bacteria. They found that it has remarkable structural similarities to human adenoviruses, which cause various diseases, including respiratory infections. Using data from their own and other laboratories, the researchers have created structure-based models to demonstrate structural similarities in the coats--proteins and architecture--among viruses that infect hosts from all three domains of life. The three domains are eukarya (animals, plants, and other higher order organisms); bacteria; and archaea (a recently described group of microorganisms that differ from bacteria and are commonly found in extreme environments like geysers, and alkaline, acidic or salty waters).

It is difficult to study viral evolution, Burnett says, because viruses live symbiotically with their hosts and adopt host-related traits. Instead of being inherited from a viral ancestor, these host-related traits may be picked up from the host or other microorganisms. For viruses that diverged from a common ancestor billions of years ago, and so have significant differences in genome size, genetic complexity, and host, structural similarities may be the only evidence remaining that indicates a shared lineage.

While viral lineage is in itself a question that interests scientists, research in this area may ultimately inform anti-viral drug discovery. Structural similarities in viruses may point to sites of enzymatic activity that could be targeted with drugs. For example, in two of the viruses studied, one vertex of the apparently symmetric coat is different and used for DNA packaging. With this knowledge in mind, researchers could explore whether human viruses with similar coat proteins also have a unique vertex devoted for DNA packaging. If so, new anti-virals could be developed to target this mechanism.

In addition to senior author Burnett, the other authors of the study are: Stacy D. Benson, Ph.D., formerly of Wistar and now an assistant professor of chemistry at Oklahoma State University, and Jaana K.H. Bamford, Ph.D., and Dennis H. Bamford, Ph.D., both of the University of Helsinki.

Funding for the research was provided by the National Institutes of Health; the Human Frontiers Science Program; the Commonwealth Universal Research Enhancement Program, Pennsylvania Department of Health; and the Academy of Finland.

Franklin Hoke | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>