Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salt-Water Minnow Research Helps Explain Human Cardiology Puzzle

03.12.2004


Doctors and their patients have puzzled over why certain cholesterol-lowering drugs work better in some people than others. In research results published in the December issue of the journal Nature Genetics, the common minnow helps provide an answer.



Researchers Douglas Crawford and Jennifer Roach of the University of Miami’s Rosenstiel School of Marine and Atmospheric Science (RSMAS) and Marjorie Oleksiak of North Carolina State University studied the genetic make-up of the fish and found that normal differences in how their heart muscles process fats and sugars contain clues to this mystery. The National Science Foundation (NSF)’s biocomplexity in the environment program, and biological oceanography program, funded the work.

"These scientists found a genetic set of keys that begins to unlock the mystery of why certain people can eat fatty foods and not suffer from heart disease, and why some medical treatments work more effectively in some people than in others," said Philip Taylor, director of NSF’s biological oceanography program. "This far-reaching research is a result of NSF’s investment in the use of genetics as a way of understanding how organisms adapt to their environments."


Some hearts, it turns out, use glucose (sugar) better than others. Some use fatty acids (fats) better. In general, if an individual is good at using or metabolizing one source, he or she is not good at using the other.

Using technology known as gene microarrays, the scientists were able to measure how the products of genes make proteins that in turn convert food sources into energy. They found a large variation from individual to individual in the number of genes associated with functions related to sugar and fat metabolism. Those differences explain much of the variation in cardiac metabolism of both sugar and fat, the researchers believe.

Surprisingly, the genes that matter most are not the same in each individual: in some, increases in certain genes affect the use of fats, while in others, they affect the use of sugars. "This is an important first step in understanding why some of us can eat fatty foods and not suffer from cardiac disease," said Crawford, "and why some drugs or medical treatments work on some individuals but not on others."

Ultimately, the scientists think, their work could point the way toward identifying the number and type of certain genes a person has. With this information, doctors may be able to prescribe the most effective medication within a certain class of drugs to treat high cholesterol or blood sugar, and have a clearer understanding of an individual’s propensity for heart disease.

The research was also funded by the National Institutes of Health’s National Heart, Lung and Blood Institute.

Cheryl Dybas | NSF News
Further information:
http://www.nsf.gov

More articles from Life Sciences:

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

nachricht X-ray experiments reveal two different types of water
27.06.2017 | Deutsches Elektronen-Synchrotron DESY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

NASA sees quick development of Hurricane Dora

27.06.2017 | Earth Sciences

New method to rapidly map the 'social networks' of proteins

27.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>