Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular tailoring of chemotherapy with novel imaging techniques

02.12.2004


Beacon schematic


DR5 gene silencing image


Molecular beacons, gene silencing, and reporter genes studied to better predict response to chemotherapy

Researchers at the Abramson Cancer Center of the University of Pennsylvania are applying a host of imaging techniques to develop better ways to look noninvasively at the molecular characteristics of tumors. The experiments, now in human cell cultures and mouse models, are aimed at better forecasting early response to chemotherapy so that treatment choices can be adjusted.

"Right now in cancer therapy, with the exception of relatively uncommon examples of cancers for which we have tumor markers, we don’t have reliable ways of predicting who is going to respond early on to chemotherapy," says Wafik El-Deiry, MD, PhD, Associate Professor, Departments of Medicine, Genetics, and Pharmacology. "Currently cancer patients get their chemo and you can’t tell if they’re responding for several weeks. We need to have tests that will tell us if patients are going to respond to the chemo or the radiation soon after it’s first given, and whether these responses are going to last."



Two recent papers in Cancer Biology & Therapy and Cancer Research describe the work of the El-Deiry laboratory. One approach is to use a molecular beacon, a molecule that can be activated within cells due to a specific context, such as in this case, the response to chemotherapy. The beacon recognizes a characteristic change in chemo-treated tumor cells, physically opens up and fluoresces, which can then be measured. "The beacon goes right into the living cell and if it opens up, emitting fluorescence, we can detect the glow," says El-Deiry.

Human lung-cancer cells were treated with the chemotherapeutic agent doxorubicin (Adriamycin), which causes cellular DNA damage. Doxorubicin works through the tumor suppressor protein p53, which ultimately kills many types of cancer cells. "We engineered a molecular beacon to detect expression of a gene called p21, that is turned on directly by p53 when cells are exposed to Doxorubicin," says El-Deiry.

The cells that were exposed to Doxorubicin activated the p53-responsive molecular-beacon tag and emitted a strong fluorescence. From this El-Deiry and colleagues hope to develop a scan that could detect a patient’s likely reaction to certain chemotherapies: Strong fluorescence equals a good response to the chemotherapy. They hope to make what he refers to as a "beacon cocktail" that can predict response by monitoring multiple genes simultaneously as well as additional intracellular events in the process of cell death.
In another study El-Deiry and colleagues combine imaging techniques and a mouse model for colon cancer. "In this research, we’re combining two very powerful emerging technologies," says El-Deiry. "This is the first example, to my knowledge, of the use of inducible gene silencing and non-invasive bioluminescence imaging in a mouse model for cancer." Gene silencing is a technique that allows researchers to control the expression of any gene in a given cell by introducing small RNA sequences targeting the gene of interest. Inducible refers to the ability to control whether or not the silencing RNA is expressed in the cell so that investigators can compare gene activity to tumor growth, as El-Deiry did in this study. This approach allows researchers to regulate gene expression by what they feed the mice. In this study, the KILLER/DR5 receptor, another protein that responds to chemotherapy by killing cancer cells, is silenced in colon tumors in the mice.

They also labeled the cells with a reporter gene called firefly luciferase, which gives off light. "The use of a reporter like firefly luciferase marks the tumor cells so we can see them by another imaging technique," explains El-Deiry. "Fireflies that we see in the evening carry out the same chemical reaction with their own luciferase protein to give off the light." The imager detects the light and captures its intensity to provide a measurement of the size of the tumor.

"The bioluminescence imaging technology has provided a breakthrough that allows scientists to examine the size of a tumor in living mice with high sensitivity," says El-Deiry. "Since the reporter gene is always on and only in the tumor cell, it’s essentially measuring tumor volume. Using the reporter gene along with the KILLER/DR5 silencer, we show for the first time that when we turn off KILLER/DR5, we get bigger tumors."

While the beacon or beacon cocktails have the potential to be used in the clinic to detect mutations in cancer cells or the activation of genes that predict therapeutic response, the major advance with the bioluminescence imaging is in accelerating preclinical drug development. The gene silencing allows precise molecular characterization of targets that are relevant for therapeutic response while the imaging allows non-invasive assessment of drug activity towards implanted tumors. This approach saves time and money because it is possible to see the effects of drugs in living mice without sacrificing them and it also requires fewer mice in experiments.

Because the KILLER/DR5 receptor is involved in the process of cell death by chemotherapy, El-Deiry is also gaining insight into which drugs use it and which drugs work by other mechanisms. "This is important because to maximize tumor killing and to attempt to bypass or reverse resistance to chemotherapy, we need to harness all the ways cancer cells can be killed," he says.

The KILLER/DR5 receptor is engaged by a therapeutic agent currently being developed called TRAIL (Tumor necrosis factor-Related Apoptosis Inducing Ligand). TRAIL is produced normally by natural killer cells and controls tumor spread by binding to a tumor’s death-inducing receptor KILLER/DR5. "However, in cancer patients with suppressed immunity and for reasons we still don’t understand, there isn’t enough TRAIL being produced or effectively delivered by the natural killer cells at the site of tumors and so tumors are not suppressed," says El-Deiry. "The hope is that if TRAIL is administered to patients alone or in combination with chemotherapy, this may in the clinic lead to some benefit." TRAIL looks promising in animal studies but clinical studies that are due to start in the next year or so will determine how toxic TRAIL is and begin to see whether it really works in cancer patients.

: Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>