Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD Biologists Identify Gene In Corn Plants That

02.12.2004


Biologists at the University of California, San Diego have identified a gene that appears to have been a critical trait in allowing the earliest plant breeders 7,000 years ago to transform teosinte, a wild grass that grows in the Mexican Sierra Madre, into maize, the world’s third most planted crop after rice and wheat.


Graphic shows teosinte, maize and barrenstalk1 mutant Credit: John Doebley and Andrea Gallavotti



In a paper that appears in the December 2 issue of the journal Nature, the scientists report their discovery of a gene that regulates the development of secondary branching in plants, presumably permitting the highly branched, bushy teosinte plant to be transformed into the stalk-like modern maize.

The researchers say the presence of numerous variants of this gene in teosinte, but only one variant of the gene in all inbred varieties of modern maize, provides tantalizing evidence that Mesoamerican crop breeders most likely used this trait in combination with a small number of other traits to selectively transform teosinte to maize, one of the landmark events in the development of modern agriculture.


“What we know is that this gene is critical for branching to take place in maize, including the branches that give rise to the ears of corn,” says Robert J. Schmidt, a professor of biology at UCSD who headed the research team. “And we presume that there was something unusual in the morphology that these early farmers selected from the wild teosinte that made it easier for them to plant, grow or harvest their crops. This gene will give us some important new clues to what genetic traits these plant breeders focused on when they transformed teosinte to maize. In a broader context, it is quite possible that the same gene in other plant species is equally essential to the overall architecture that a particular plant assumes by programming the very cells that produce new branches.”

The gene cloned by the scientists is called barren stalk1 because when the gene product is absent a relatively barren stalk results—one with leaves, but without secondary branches. In maize, these secondary branches include the female reproductive parts of the plant—or ears of corn—and the male reproductive organ, or tassel, the multiple branched crown at the top of the plant.

Teosinte has numerous tassels and tiny ears in its highly branched architecture, while maize has only one tassel and much fewer, but much larger, ears. This suggests that the limitations to branching imposed by some combination of the barren stalk1 and other genes that were selected for by the early plant breeders allowed the early genetic mutants of teosinte to concentrate more of the plant’s resources into producing bigger ears that could be harvested.

The recessive mutation leading to barren stalks in corn plants was first identified in 1928 from seeds collected in South America by early maize geneticists. Because the mutation so dramatically affected the reproductive parts of the plants, and because the development of maize involved changes in the architecture of the teosinte plant, Schmidt realized that the mutation was important and set about to study the genetic and developmental basis of the mutation further with Matthew Ritter and Christopher Padilla, two former graduate students in his laboratory.

The isolation of the barren stalk1 gene and the discovery that it was responsible for this recessive mutation was subsequently made by Andrea Gallavotti, a postdoctoral fellow in Schmidt’s laboratory. Other coauthors of the paper include Ritter, now at California Polytechnic State University in San Luis Obispo; M. Enrico Pe’ of the University of Milan; Junko Kyozuka of the University of Tokyo; Robert Meeley of DuPont subsidiary, Pioneer Hi-Bred International, Inc.; and Qiong Zhao and John Doebley of the University of Wisconsin at Madison.

Doebley, a professor of genetics at Madison and an expert in the evolution of teosinte to maize, was intrigued by the realization that the barren stalk1 gene was located in one of five regions of the maize genome known to be important in the breeding of teosinte to maize. With the help of his graduate student, Qiong Zhao, the two scientists found that many variants of the gene exist in teosinte, yet only one was incorporated into modern maize inbreds. This led them to conclude that targeted selection of this particular barren stalk1 variant by humans was likely an important addition to the traits responsible for the development of modern maize.

“This gene seems to have been the target of human selection,” says Doebley. “The fact that humans preferred some allelic form of this gene over others is a smoking gun. But we don’t have the direct proof yet. We need to do some follow up studies to see if this gene was really involved.”

The project was supported by grants from the National Science Foundation and the National Institutes of Health.

Comment: Robert J. Schmidt (858) 534-1636
Media Contact: Kim McDonald (858) 534-7572

Robert J. Schmidt | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Desert ants cannot be fooled
23.11.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Desert ants cannot be fooled

23.11.2017 | Life Sciences

By saving cost and energy, the lighting revolution may increase light pollution

23.11.2017 | Earth Sciences

Retreating permafrost coasts threaten the fragile Arctic environment

23.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>