Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD Biologists Identify Gene In Corn Plants That

02.12.2004


Biologists at the University of California, San Diego have identified a gene that appears to have been a critical trait in allowing the earliest plant breeders 7,000 years ago to transform teosinte, a wild grass that grows in the Mexican Sierra Madre, into maize, the world’s third most planted crop after rice and wheat.


Graphic shows teosinte, maize and barrenstalk1 mutant Credit: John Doebley and Andrea Gallavotti



In a paper that appears in the December 2 issue of the journal Nature, the scientists report their discovery of a gene that regulates the development of secondary branching in plants, presumably permitting the highly branched, bushy teosinte plant to be transformed into the stalk-like modern maize.

The researchers say the presence of numerous variants of this gene in teosinte, but only one variant of the gene in all inbred varieties of modern maize, provides tantalizing evidence that Mesoamerican crop breeders most likely used this trait in combination with a small number of other traits to selectively transform teosinte to maize, one of the landmark events in the development of modern agriculture.


“What we know is that this gene is critical for branching to take place in maize, including the branches that give rise to the ears of corn,” says Robert J. Schmidt, a professor of biology at UCSD who headed the research team. “And we presume that there was something unusual in the morphology that these early farmers selected from the wild teosinte that made it easier for them to plant, grow or harvest their crops. This gene will give us some important new clues to what genetic traits these plant breeders focused on when they transformed teosinte to maize. In a broader context, it is quite possible that the same gene in other plant species is equally essential to the overall architecture that a particular plant assumes by programming the very cells that produce new branches.”

The gene cloned by the scientists is called barren stalk1 because when the gene product is absent a relatively barren stalk results—one with leaves, but without secondary branches. In maize, these secondary branches include the female reproductive parts of the plant—or ears of corn—and the male reproductive organ, or tassel, the multiple branched crown at the top of the plant.

Teosinte has numerous tassels and tiny ears in its highly branched architecture, while maize has only one tassel and much fewer, but much larger, ears. This suggests that the limitations to branching imposed by some combination of the barren stalk1 and other genes that were selected for by the early plant breeders allowed the early genetic mutants of teosinte to concentrate more of the plant’s resources into producing bigger ears that could be harvested.

The recessive mutation leading to barren stalks in corn plants was first identified in 1928 from seeds collected in South America by early maize geneticists. Because the mutation so dramatically affected the reproductive parts of the plants, and because the development of maize involved changes in the architecture of the teosinte plant, Schmidt realized that the mutation was important and set about to study the genetic and developmental basis of the mutation further with Matthew Ritter and Christopher Padilla, two former graduate students in his laboratory.

The isolation of the barren stalk1 gene and the discovery that it was responsible for this recessive mutation was subsequently made by Andrea Gallavotti, a postdoctoral fellow in Schmidt’s laboratory. Other coauthors of the paper include Ritter, now at California Polytechnic State University in San Luis Obispo; M. Enrico Pe’ of the University of Milan; Junko Kyozuka of the University of Tokyo; Robert Meeley of DuPont subsidiary, Pioneer Hi-Bred International, Inc.; and Qiong Zhao and John Doebley of the University of Wisconsin at Madison.

Doebley, a professor of genetics at Madison and an expert in the evolution of teosinte to maize, was intrigued by the realization that the barren stalk1 gene was located in one of five regions of the maize genome known to be important in the breeding of teosinte to maize. With the help of his graduate student, Qiong Zhao, the two scientists found that many variants of the gene exist in teosinte, yet only one was incorporated into modern maize inbreds. This led them to conclude that targeted selection of this particular barren stalk1 variant by humans was likely an important addition to the traits responsible for the development of modern maize.

“This gene seems to have been the target of human selection,” says Doebley. “The fact that humans preferred some allelic form of this gene over others is a smoking gun. But we don’t have the direct proof yet. We need to do some follow up studies to see if this gene was really involved.”

The project was supported by grants from the National Science Foundation and the National Institutes of Health.

Comment: Robert J. Schmidt (858) 534-1636
Media Contact: Kim McDonald (858) 534-7572

Robert J. Schmidt | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>