Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells of limited use for cardiac muscle repair

02.12.2004


New evidence suggests that a promising investigational treatment for patients with damaged hearts -- using adult stem cells to regenerate heart tissue -- may not work as planned. In the December 2004 issue of the Journal of Clinical Investigation, researchers from the University of Chicago show that although stem cells derived from bone marrow can find their way to areas of damaged heart muscle, infiltrate into these regions and proliferate, they do not mature into new cardiac muscle cells.

A series of previous studies suggested that stem cells from bone marrow could be induced to become cardiac muscle, replacing damaged tissue and potentially restoring heart function. This series of more-rigorous experiments, however, found that the transplanted cells are unable to take the crucial final steps. They do not produce a muscle protein called sarcoglycan, which is necessary for normal heart and skeletal muscle function.

The failure of these cells to express this protein "severely limits their utility for cardiac and skeletal muscle regeneration," the authors note. "This was a complete surprise, and a considerable disappointment," said study director Elizabeth McNally, M.D., Ph.D., associate professor of medicine at the University of Chicago. "We set out to confirm, using more stringent criteria, the very appealing strategy of using stem cells from bone marrow to regenerate cardiac muscle, but we found that they never become normal, mature muscle cells."



The researchers used bone marrow side population cells (BM-SP), a sub-set of the stem cells found in marrow. Earlier studies demonstrated that these cells could home in on areas of damaged muscle and suggested that they matured into working skeletal or cardiac muscle cells. Clinical trials of this approach are already underway in patients who have had a heart attack and initial results have been "promising."

Despite high hopes for such cellular self-renewal, however, many researchers remained skeptical about the capacity of adult stem cells, even BM-SP cells, to complete the transition. McNally, a cardiologist who studies the genetics of muscle disease, realized that mice in her lab that lack a receptor called g-sarcoglycan, normally found on the surface of muscle cells, provided the perfect test of this approach. Mice born without a functioning g-sarcoglycan gene have multiple tiny heart attacks that produce "microinfarcts," small regions of degeneration. So McNally and colleagues collected BM-SP cells from normal male mice and injected them into female mice that lacked sarcoglycan. By tracing the male Y chromosomes -- found only in the donated BM-SP cells -- they discovered that the injected cells located the areas of muscle damage and insinuated themselves, sometimes as separate cells and sometimes by fusing with muscle cells.

In neither case, though, did they produce sarcoglycan, a reliable marker of mature muscle cells. When the researchers repeated the experiment with whole bone marrow, rather than isolated BM-SP cells, they got identical results.

They were slightly more successful with skeletal muscle. After examining 10,000 muscle fibers from each of 14 mice they found two myofibers that contained sarcoglycan. These results are difficult to reconcile with the promising responses seen in mice and humans treated with adult stem cells. "It’s clear that the transplanted cells aren’t growing, as we once hoped, into heart cells," McNally said, "but they may stimulate the growth of new blood vessels into the damaged regions or they may secrete growth factors that promote recovery." If we can figure out what is actually going on in these patients and understand the mechanism, she added, we might be able to design a more effective approach.

The next step may be to find more flexible sources of injectable cells. Although readily available, BM-SP cells appear to have limited potential. Several researchers are trying to isolate a putative cardiac stem cell, which could mature into functional heart muscle. Embryonic stem cells also are an option. "The whole idea of regenerative cellular medicine is very attractive," said McNally. "Many of the diseases that most concern us involve degeneration of the heart or the brain. The notion of replacing those cells has a lot of appeal. But it does not look like stem cells from bone marrow are going to make that realistic for patients with heart failure any time soon."

John Easton | EurekAlert!
Further information:
http://www.uchospitals.edu

More articles from Life Sciences:

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

nachricht Neutrons observe vitamin B6-dependent enzyme activity useful for drug development
17.10.2017 | DOE/Oak Ridge National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Plant escape from waterlogging

17.10.2017 | Life Sciences

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>