Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Stem cells of limited use for cardiac muscle repair


New evidence suggests that a promising investigational treatment for patients with damaged hearts -- using adult stem cells to regenerate heart tissue -- may not work as planned. In the December 2004 issue of the Journal of Clinical Investigation, researchers from the University of Chicago show that although stem cells derived from bone marrow can find their way to areas of damaged heart muscle, infiltrate into these regions and proliferate, they do not mature into new cardiac muscle cells.

A series of previous studies suggested that stem cells from bone marrow could be induced to become cardiac muscle, replacing damaged tissue and potentially restoring heart function. This series of more-rigorous experiments, however, found that the transplanted cells are unable to take the crucial final steps. They do not produce a muscle protein called sarcoglycan, which is necessary for normal heart and skeletal muscle function.

The failure of these cells to express this protein "severely limits their utility for cardiac and skeletal muscle regeneration," the authors note. "This was a complete surprise, and a considerable disappointment," said study director Elizabeth McNally, M.D., Ph.D., associate professor of medicine at the University of Chicago. "We set out to confirm, using more stringent criteria, the very appealing strategy of using stem cells from bone marrow to regenerate cardiac muscle, but we found that they never become normal, mature muscle cells."

The researchers used bone marrow side population cells (BM-SP), a sub-set of the stem cells found in marrow. Earlier studies demonstrated that these cells could home in on areas of damaged muscle and suggested that they matured into working skeletal or cardiac muscle cells. Clinical trials of this approach are already underway in patients who have had a heart attack and initial results have been "promising."

Despite high hopes for such cellular self-renewal, however, many researchers remained skeptical about the capacity of adult stem cells, even BM-SP cells, to complete the transition. McNally, a cardiologist who studies the genetics of muscle disease, realized that mice in her lab that lack a receptor called g-sarcoglycan, normally found on the surface of muscle cells, provided the perfect test of this approach. Mice born without a functioning g-sarcoglycan gene have multiple tiny heart attacks that produce "microinfarcts," small regions of degeneration. So McNally and colleagues collected BM-SP cells from normal male mice and injected them into female mice that lacked sarcoglycan. By tracing the male Y chromosomes -- found only in the donated BM-SP cells -- they discovered that the injected cells located the areas of muscle damage and insinuated themselves, sometimes as separate cells and sometimes by fusing with muscle cells.

In neither case, though, did they produce sarcoglycan, a reliable marker of mature muscle cells. When the researchers repeated the experiment with whole bone marrow, rather than isolated BM-SP cells, they got identical results.

They were slightly more successful with skeletal muscle. After examining 10,000 muscle fibers from each of 14 mice they found two myofibers that contained sarcoglycan. These results are difficult to reconcile with the promising responses seen in mice and humans treated with adult stem cells. "It’s clear that the transplanted cells aren’t growing, as we once hoped, into heart cells," McNally said, "but they may stimulate the growth of new blood vessels into the damaged regions or they may secrete growth factors that promote recovery." If we can figure out what is actually going on in these patients and understand the mechanism, she added, we might be able to design a more effective approach.

The next step may be to find more flexible sources of injectable cells. Although readily available, BM-SP cells appear to have limited potential. Several researchers are trying to isolate a putative cardiac stem cell, which could mature into functional heart muscle. Embryonic stem cells also are an option. "The whole idea of regenerative cellular medicine is very attractive," said McNally. "Many of the diseases that most concern us involve degeneration of the heart or the brain. The notion of replacing those cells has a lot of appeal. But it does not look like stem cells from bone marrow are going to make that realistic for patients with heart failure any time soon."

John Easton | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>