Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green tea polyphenols thwart prostate cancer development at multiple levels

01.12.2004


The polyphenols present in green tea help prevent the spread of prostate cancer by targeting molecular pathways that shut down the proliferation and spread of tumor cells, as well as inhibiting the growth of tumor nurturing blood vessels, according to research published in the December 1 issue of Cancer Research.



A team of researchers from the University of Wisconsin, Madison, Wis., and Case Western Reserve University, Cleveland, Ohio, documented the role of green tea polyphenols (GTP) in modulating the insulin-like growth factor-1 (IGF-1)-driven molecular pathway in prostate tumor cells in a mouse model for human prostate cancer. "Consumption of GTP led to reduced levels of IGF-1," said Hasan Mukhtar, Ph.D., Department of Dermatology at the University of Wisconsin, the senior author of the paper. "GTP also led to increased levels of one of the binding proteins for IGF-1, the insulin growth factor binding protein-3. These observations bear significance in light of studies that indicate increased levels of IGF-1 are associated with increased risk of several cancers, such as prostate, breast, lung and colon."

GTP modulation of cell growth via the IGF-1 axis coincides with limited production or phosphorylation of key cell survival proteins, including PI3K, Akt and Erk1/2, the research indicated. The PI3K molecular pathway in cells, which includes Akt and Erk1/2, works to promote cell survival, rather than programmed cell death, also known as apoptosis. GTP also caused reduced expression of proteins known to be associated with the metastatic spread of cancer cells. GTP inhibited the levels of urokinase plasminogen activator as well as matrix metalloproteinases 2 and 9, cellular molecules linked to the metastasis.


The green tea polyphenols contributed to minimizing tumor development by governing the amount of vascular endothelial growth factor (VEGF) in the serum of the prostate cancer mouse model. The reduction of VEGF may result from GTP-induced suppression of IGF-1 levels. VEGF functions to recruit and develop new blood vessels that carry nutrients to developing tumors. By reducing the amount of VEGF, GTP works to minimize nutrients flowing to and supporting tumor growth.

Mukhtar’s colleagues contributing to the study included Vaqar Mustafa Adhami, Imtiaz Ahmad Siddiqui, and Nihal Ahmad from the University of Wisconsin; and Sanjay Gupta from Case Western Reserve University.

Russell Vanderboom | EurekAlert!
Further information:
http://www.aacr.org

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>