Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green tea polyphenols thwart prostate cancer development at multiple levels

01.12.2004


The polyphenols present in green tea help prevent the spread of prostate cancer by targeting molecular pathways that shut down the proliferation and spread of tumor cells, as well as inhibiting the growth of tumor nurturing blood vessels, according to research published in the December 1 issue of Cancer Research.



A team of researchers from the University of Wisconsin, Madison, Wis., and Case Western Reserve University, Cleveland, Ohio, documented the role of green tea polyphenols (GTP) in modulating the insulin-like growth factor-1 (IGF-1)-driven molecular pathway in prostate tumor cells in a mouse model for human prostate cancer. "Consumption of GTP led to reduced levels of IGF-1," said Hasan Mukhtar, Ph.D., Department of Dermatology at the University of Wisconsin, the senior author of the paper. "GTP also led to increased levels of one of the binding proteins for IGF-1, the insulin growth factor binding protein-3. These observations bear significance in light of studies that indicate increased levels of IGF-1 are associated with increased risk of several cancers, such as prostate, breast, lung and colon."

GTP modulation of cell growth via the IGF-1 axis coincides with limited production or phosphorylation of key cell survival proteins, including PI3K, Akt and Erk1/2, the research indicated. The PI3K molecular pathway in cells, which includes Akt and Erk1/2, works to promote cell survival, rather than programmed cell death, also known as apoptosis. GTP also caused reduced expression of proteins known to be associated with the metastatic spread of cancer cells. GTP inhibited the levels of urokinase plasminogen activator as well as matrix metalloproteinases 2 and 9, cellular molecules linked to the metastasis.


The green tea polyphenols contributed to minimizing tumor development by governing the amount of vascular endothelial growth factor (VEGF) in the serum of the prostate cancer mouse model. The reduction of VEGF may result from GTP-induced suppression of IGF-1 levels. VEGF functions to recruit and develop new blood vessels that carry nutrients to developing tumors. By reducing the amount of VEGF, GTP works to minimize nutrients flowing to and supporting tumor growth.

Mukhtar’s colleagues contributing to the study included Vaqar Mustafa Adhami, Imtiaz Ahmad Siddiqui, and Nihal Ahmad from the University of Wisconsin; and Sanjay Gupta from Case Western Reserve University.

Russell Vanderboom | EurekAlert!
Further information:
http://www.aacr.org

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

Topologische Quantenchemie

21.07.2017 | Life Sciences

Pulses of electrons manipulate nanomagnets and store information

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>