Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved molecular switch could serve as sensor, medical tool

30.11.2004


’Device’ made of fused protein partners is shown to be reversible and highly sensitive



Improving significantly on an early prototype, Johns Hopkins University researchers have found a new way to join two unrelated proteins to create a molecular switch, a nanoscale "device" in which one biochemical partner controls the activity of the other. Lab experiments have demonstrated that the new switch performs 10 times more effectively than the early model and that its "on-off" effect is repeatable.

The new technique to produce the molecular switch and related experimental results are reported in the November issue of the journal Chemistry & Biology. The paper builds on earlier research, led by Marc Ostermeier, which demonstrated that it was possible to create a fused protein in which one component sends instructions to the other. The second then carries out the task. "Last year, we reported that we’d used protein engineering techniques to make a molecular switch, putting together two proteins that normally had nothing to do with one another, but the switching properties of that version were insufficient for many applications," said Ostermeier, an assistant professor in the Department of Chemical and Biomolecular Engineering at Johns Hopkins. "With the new technique, we’ve produced a molecular switch that’s over 10 times more effective. When we introduce this switch into bacteria, it transforms them into a working sensor."


As in their earlier experiments, Ostermeier’s team made a molecular switch by joining two proteins that typically do not interact: beta-lactamase and the maltose binding protein found in a harmless form of E. coli bacteria. Each of these proteins has a distinct activity that makes it easy to monitor. Beta-lactamase is an enzyme that can disable and degrade penicillin-like antibiotics. Maltose binding protein binds to a type of sugar called maltose that E. coli cells can use as food.

In the previous experiments, the researchers used a cut-and-paste process to insert the beta-lactamase protein into a variety of locations on the maltose binding protein, both proteins being long chains of amino acids that can be thought of as long ribbons. In the new process, the team joined the two natural ends of the beta-lactamase chain to create one continuous molecular loop. Then, they snipped this "ribbon" at random points before inserting the beta-lactamase in random locations in the maltose binding protein. This technique, called random circular permutation, increases the likelihood that the two proteins will be fused in a manner in which they can communicate with each other, Ostermeier said. As a result, it’s more likely that a strong signal will be transmitted from one partner to the other in some of the combined proteins.

In their new paper, the Johns Hopkins team reported that this technique yielded approximately 27,000 variations of the fused proteins. Among these, they isolated one molecular switch, in which the presence of maltose, detected by one partner, caused the other partner to increase its attack on an antibiotic 25-fold. They also showed that the switch could be turned off: When the maltose triggering agent was removed, the degradation of the antibiotic instantly slowed to its original pace.

Ostermeier believes the same molecular switch technology could be used to produce "smart" materials, medical devices that can detect cancer cells and release drugs, and sensors that could sound an alarm in the presence of chemical or biological agents. His team is now seeking to create a molecular switch that fluorescently lights up only in the presence of certain cellular activity. "We’ve proven that we can make effective molecular switches," he said. "Now, we want to use this idea to create more interesting and more useful devices."

Gurkan Guntas, a doctoral student in Ostermeier’s lab, was lead author on the new Chemistry & Biology paper. The co-authors were Ostermeier and Sarah F. Mitchell, a doctoral student in the Program in Molecular Biophysics at Johns Hopkins. The research was supported by a grant from the National Institutes of Health. The Johns Hopkins University has applied for a patent covering the molecular switch and methods of producing it.

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>