Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy shows promise in model of Parkinson’s disease

30.11.2004


Scientists at the Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland, have conducted novel experiments that might one day lead to gene therapy treatment options for patients with Parkinson’s disease.



In research published this week in the Proceedings of the National Academy of Sciences, the research team, led by EPFL President Patrick Aebischer, found that viral delivery of a gene associated with Parkinson’s disease protected neurons from degeneration.

Parkinson’s disease is a progressive, degenerative neurological disorder in which dopamine-producing neurons in the part of the brain responsible for coordinating muscle movement die or become so damaged that they are no longer able to function. Dopamine is a neurotransmitter, a "chemical messenger" that transfers information from neuron to neuron, ultimately allowing us to use our muscles in a smooth, coordinated way. Disease symptoms, such as tremor, rigidity, difficulty coordinating movement and difficulty with balance begin to manifest themselves when about 80% of a victim’s dopamine-producing neurons have died.


Scientists estimate that Parkinson’s disease affects 1-3 % of people over the age of 60. In the United States alone, 1.5 million people suffer from Parkinson’s disease, and about 60,000 new patients are diagnosed every year. Although it is commonly thought of as a disease of the elderly, 15% of Parkinson’s victims are under the age of 50.

Scientists are not sure what causes Parkinson’s disease. There is no way to prevent its onset and once diagnosed, it has no cure. Treatment is limited to ameliorating symptoms with a variety of therapies, including dopamine-based drug therapy. Only about 5-10 % of Parkinson’s appears to be inherited, and to date five genes have been implicated in patients with a familial history of the disease. Studies of these inherited forms of Parkinson’s have led to insights on its pathogenesis in sporadic or non-inherited cases.

One form of inherited Parkinson’s is associated with mutations in the alpha-synuclein gene that cause overexpression of the alpha-synuclein protein. Alpha-synuclein, in turn, is a major component of the proteinaceous intracellular deposits known as Lewy bodies that are characteristic of sporadic Parkinson’s. This suggests that the disease might be linked to a toxic overaccumulation of alpha-synuclein.

A more common, recessive form of inherited Parkinson’s disease typically strikes before the age of 40 and is linked to a mutation in the parkin gene. The loss of enzyme activity resulting from this mutation leads to an accumulation of protein substrates, including alpha-synuclein, in the cell. In these juvenile Parkinson’s cases Lewy bodies are not generally present.

Both these forms of the disease involve buildup of alpha-synuclein in the cell, and result in cell degeneration and death. All the evidence pointed to the possibility that parkin might play an important role in protecting neurons from toxic overaccumulations of alpha-synuclein. Aebischer, PhD student Christophe Lo Bianco and their colleagues tested this by injecting rats sub-cranially with lentiviral vectors containing the genes for parkin as well as a mutated form of the alpha-synuclein gene. Harmless forms of viruses such as the lentiviral vector are used by researchers because they can efficiently penetrate cells and deliver the gene of interest without inducing a major immune response.

The viruses successfully delivered the genetic material to about 30% of the rat neurons, causing overexpression of parkin and alpha-synuclein. After six weeks, the researchers found that almost all these affected dopamine neurons in rats that had been injected with alpha-synuclein alone had died. In contrast, numerous affected dopamine neurons in animals injected with both parkin and alpha-synuclein were still going strong. The presence of parkin had protected the neurons from alpha-synuclein toxicity.

In addition, rats that had been injected with parkin showed an increase in Lewy body-type intracellular deposits. The researchers postulated that parkin might work to enhance cell survival by somehow transforming soluble toxic proteins into insoluble aggregates.

The findings constitute a significant step forward in understanding the molecular mechanisms behind the disease, says Lo Bianco. "We demonstrated for the first time the feasibility of the gene therapy approach in a genetic model of Parkinson’s disease."

Results of this research might lead to new treatments that could prevent the onset of Parkinson’s disease in genetically predisposed subjects and arrest the disease’s progression once it has been diagnosed, according to Aebischer. "These observations could translate into the clinic either through a direct gene therapy approach or through the identification of small drugs which enhance the expression of the endogenous parkin."

The next step, Lo Bianco notes, is to scale the system up to a primate model. The technique must be able to deliver genetic material to a sufficient number of cells to allow researchers to observe a beneficial effect. In addition, the therapy would have to be meticulously tested for possible side effects and long-term feasibility.

Mary Parlange | EurekAlert!
Further information:
http://www.epfl.ch

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>