Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy shows promise in model of Parkinson’s disease

30.11.2004


Scientists at the Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland, have conducted novel experiments that might one day lead to gene therapy treatment options for patients with Parkinson’s disease.



In research published this week in the Proceedings of the National Academy of Sciences, the research team, led by EPFL President Patrick Aebischer, found that viral delivery of a gene associated with Parkinson’s disease protected neurons from degeneration.

Parkinson’s disease is a progressive, degenerative neurological disorder in which dopamine-producing neurons in the part of the brain responsible for coordinating muscle movement die or become so damaged that they are no longer able to function. Dopamine is a neurotransmitter, a "chemical messenger" that transfers information from neuron to neuron, ultimately allowing us to use our muscles in a smooth, coordinated way. Disease symptoms, such as tremor, rigidity, difficulty coordinating movement and difficulty with balance begin to manifest themselves when about 80% of a victim’s dopamine-producing neurons have died.


Scientists estimate that Parkinson’s disease affects 1-3 % of people over the age of 60. In the United States alone, 1.5 million people suffer from Parkinson’s disease, and about 60,000 new patients are diagnosed every year. Although it is commonly thought of as a disease of the elderly, 15% of Parkinson’s victims are under the age of 50.

Scientists are not sure what causes Parkinson’s disease. There is no way to prevent its onset and once diagnosed, it has no cure. Treatment is limited to ameliorating symptoms with a variety of therapies, including dopamine-based drug therapy. Only about 5-10 % of Parkinson’s appears to be inherited, and to date five genes have been implicated in patients with a familial history of the disease. Studies of these inherited forms of Parkinson’s have led to insights on its pathogenesis in sporadic or non-inherited cases.

One form of inherited Parkinson’s is associated with mutations in the alpha-synuclein gene that cause overexpression of the alpha-synuclein protein. Alpha-synuclein, in turn, is a major component of the proteinaceous intracellular deposits known as Lewy bodies that are characteristic of sporadic Parkinson’s. This suggests that the disease might be linked to a toxic overaccumulation of alpha-synuclein.

A more common, recessive form of inherited Parkinson’s disease typically strikes before the age of 40 and is linked to a mutation in the parkin gene. The loss of enzyme activity resulting from this mutation leads to an accumulation of protein substrates, including alpha-synuclein, in the cell. In these juvenile Parkinson’s cases Lewy bodies are not generally present.

Both these forms of the disease involve buildup of alpha-synuclein in the cell, and result in cell degeneration and death. All the evidence pointed to the possibility that parkin might play an important role in protecting neurons from toxic overaccumulations of alpha-synuclein. Aebischer, PhD student Christophe Lo Bianco and their colleagues tested this by injecting rats sub-cranially with lentiviral vectors containing the genes for parkin as well as a mutated form of the alpha-synuclein gene. Harmless forms of viruses such as the lentiviral vector are used by researchers because they can efficiently penetrate cells and deliver the gene of interest without inducing a major immune response.

The viruses successfully delivered the genetic material to about 30% of the rat neurons, causing overexpression of parkin and alpha-synuclein. After six weeks, the researchers found that almost all these affected dopamine neurons in rats that had been injected with alpha-synuclein alone had died. In contrast, numerous affected dopamine neurons in animals injected with both parkin and alpha-synuclein were still going strong. The presence of parkin had protected the neurons from alpha-synuclein toxicity.

In addition, rats that had been injected with parkin showed an increase in Lewy body-type intracellular deposits. The researchers postulated that parkin might work to enhance cell survival by somehow transforming soluble toxic proteins into insoluble aggregates.

The findings constitute a significant step forward in understanding the molecular mechanisms behind the disease, says Lo Bianco. "We demonstrated for the first time the feasibility of the gene therapy approach in a genetic model of Parkinson’s disease."

Results of this research might lead to new treatments that could prevent the onset of Parkinson’s disease in genetically predisposed subjects and arrest the disease’s progression once it has been diagnosed, according to Aebischer. "These observations could translate into the clinic either through a direct gene therapy approach or through the identification of small drugs which enhance the expression of the endogenous parkin."

The next step, Lo Bianco notes, is to scale the system up to a primate model. The technique must be able to deliver genetic material to a sufficient number of cells to allow researchers to observe a beneficial effect. In addition, the therapy would have to be meticulously tested for possible side effects and long-term feasibility.

Mary Parlange | EurekAlert!
Further information:
http://www.epfl.ch

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>