Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New pheromone creates buzz about the clout of older bees


A recent discovery unveils the chemical secret that gives old bees the authority to keep young bees home babysitting instead of going out on the town.

A hard-to-detect pheromone explains a phenomenon Michigan State University entomologist Zachary Huang published 12 years ago – that somehow older forager bees exert influence over the younger nurse bees in a hive, keeping them grounded until they are more mature, and thus more ready to handle the demands of buzzing about.

The work that identifies the chemical, "Regulation of Behavioral Maturation in Honey Bees by a New Primer Pheromone" is publishing in Proceedings of the National Academy of Science Biological Sciences, Population Biology, Early Edition the week of Nov. 29. "If the older ones don’t keep them in check, the young ones can mature too quickly," Huang said. "It’s kind of the same thing as with people, you need the elders to check on the young, even if the young are physically able to go out on their own, it’s not the best situation for anybody and now we know how it works."

Huang worked with a team that spanned from the United States, France and Canada to explain how the bees kept an exquisitely consistent balance between the ones that go out to collect nectar and pollen and defend the hive, and those that stay home and nurture the larvae. Huang had documented that this balance is controlled by the elder bees, those that typically spend the final one to three weeks of their five-week lifespan out in the field.

Experiments showed that if a significant number of forager bees didn’t come home, the young nurse bees would mature ahead of schedule and head out to become foragers themselves. If the older bees were kept inside more than usual – as in an extended rain shower – fewer young bees would mature, but instead stick to brood care.

But the question was always, why? Pheromones are a chemical signal emitted by animals, insects and humans. Some, called releaser pheromones, are like a quick conversation that changes behavior, such as those that inspire sexual attraction.

Since releasers change behaviors immediately, they historically have been easier to identify. Hundreds of releaser pheromones have been chemically identified, whereas only four (including this new one) have been identified as primer pheromones. Primer pheromones are more difficult to work with because they imparts behavioral changes in a much longer time scale, taking days or sometimes weeks to see an effect.

Huang and his associates spent years futilely searching for a primer pheromone. After many dead ends, the group came upon a crucial difference between forager bees and nurse bees: Forager bees carry a mother load of a chemical called ethyl oleate in the abdominal reservoir in which they store nectar. That, Huang said, led them to identify ethyl oleate as another kind of pheromone – called primer pheromone.

Forager bees load up on ethyl oleate when they’re buzzing about gathering food, but don’t digest it. The forager bees feed the chemical to the worker bees, and the ethyl oleate keeps them in a teenage state, sort of like being grounded to watch the younger siblings.

As the old bees die off, the chemical no longer is fed to nurse bees. Eliminate ethyl oleate and the bees mature into forager. "This provides clear insight into how a bee colony works," said Gene Robinson, G. William Arends professor of integrative biology and director of the neuroscience program at the University of Illinois at Champaign-Urbana. "What’s most impressive about a honey bee colony is it is able to respond to changing conditions and alter its division of labor. When you think of that type of flexibility and adaptability, you immediately think, ’who’s in charge’? People from many scientific and engineering endeavors are fascinated by localized decentralized decision making."

Huang said the system makes sense for the health of the hive. Young bees – those in the first two to three weeks of life – are biologically better suited for brood care, thanks to some boosted blood protein. Bees forced out too early aren’t great navigators, and since foraging is dangerous, they risk dying before their time. "Our idea has never been disproved, but the lack of mechanism drove me crazy," said Huang. "Now we know the specific chemical that controls the behavior of honey bees for the good of the whole population."

In addition to Huang and Robinson, the paper’s authors are Isabelle Leoncini, Yves Le Conte, Didier Crauser, Guy Costagliola and Jean-Marc Bécard, of the National Institute of Agricultural Research in Avignon, France; Mianwei Wang, Erika Plettner and Keith Slessor of Simon Fraser University in Burnaby, Canada; and Amy Toth of the University of Illinois at Urbana-Champaign.

Zachary Huang | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>