Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New pheromone creates buzz about the clout of older bees

30.11.2004


A recent discovery unveils the chemical secret that gives old bees the authority to keep young bees home babysitting instead of going out on the town.



A hard-to-detect pheromone explains a phenomenon Michigan State University entomologist Zachary Huang published 12 years ago – that somehow older forager bees exert influence over the younger nurse bees in a hive, keeping them grounded until they are more mature, and thus more ready to handle the demands of buzzing about.

The work that identifies the chemical, "Regulation of Behavioral Maturation in Honey Bees by a New Primer Pheromone" is publishing in Proceedings of the National Academy of Science Biological Sciences, Population Biology, Early Edition the week of Nov. 29. "If the older ones don’t keep them in check, the young ones can mature too quickly," Huang said. "It’s kind of the same thing as with people, you need the elders to check on the young, even if the young are physically able to go out on their own, it’s not the best situation for anybody and now we know how it works."


Huang worked with a team that spanned from the United States, France and Canada to explain how the bees kept an exquisitely consistent balance between the ones that go out to collect nectar and pollen and defend the hive, and those that stay home and nurture the larvae. Huang had documented that this balance is controlled by the elder bees, those that typically spend the final one to three weeks of their five-week lifespan out in the field.

Experiments showed that if a significant number of forager bees didn’t come home, the young nurse bees would mature ahead of schedule and head out to become foragers themselves. If the older bees were kept inside more than usual – as in an extended rain shower – fewer young bees would mature, but instead stick to brood care.

But the question was always, why? Pheromones are a chemical signal emitted by animals, insects and humans. Some, called releaser pheromones, are like a quick conversation that changes behavior, such as those that inspire sexual attraction.

Since releasers change behaviors immediately, they historically have been easier to identify. Hundreds of releaser pheromones have been chemically identified, whereas only four (including this new one) have been identified as primer pheromones. Primer pheromones are more difficult to work with because they imparts behavioral changes in a much longer time scale, taking days or sometimes weeks to see an effect.

Huang and his associates spent years futilely searching for a primer pheromone. After many dead ends, the group came upon a crucial difference between forager bees and nurse bees: Forager bees carry a mother load of a chemical called ethyl oleate in the abdominal reservoir in which they store nectar. That, Huang said, led them to identify ethyl oleate as another kind of pheromone – called primer pheromone.

Forager bees load up on ethyl oleate when they’re buzzing about gathering food, but don’t digest it. The forager bees feed the chemical to the worker bees, and the ethyl oleate keeps them in a teenage state, sort of like being grounded to watch the younger siblings.

As the old bees die off, the chemical no longer is fed to nurse bees. Eliminate ethyl oleate and the bees mature into forager. "This provides clear insight into how a bee colony works," said Gene Robinson, G. William Arends professor of integrative biology and director of the neuroscience program at the University of Illinois at Champaign-Urbana. "What’s most impressive about a honey bee colony is it is able to respond to changing conditions and alter its division of labor. When you think of that type of flexibility and adaptability, you immediately think, ’who’s in charge’? People from many scientific and engineering endeavors are fascinated by localized decentralized decision making."

Huang said the system makes sense for the health of the hive. Young bees – those in the first two to three weeks of life – are biologically better suited for brood care, thanks to some boosted blood protein. Bees forced out too early aren’t great navigators, and since foraging is dangerous, they risk dying before their time. "Our idea has never been disproved, but the lack of mechanism drove me crazy," said Huang. "Now we know the specific chemical that controls the behavior of honey bees for the good of the whole population."

In addition to Huang and Robinson, the paper’s authors are Isabelle Leoncini, Yves Le Conte, Didier Crauser, Guy Costagliola and Jean-Marc Bécard, of the National Institute of Agricultural Research in Avignon, France; Mianwei Wang, Erika Plettner and Keith Slessor of Simon Fraser University in Burnaby, Canada; and Amy Toth of the University of Illinois at Urbana-Champaign.

Zachary Huang | EurekAlert!
Further information:
http://www.msu.edu

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>