Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Patients’ own stem cells used to cure incontinence

30.11.2004


Austrian researchers are successfully treating incontinent women with the patient’s own muscle-derived stem cells. The findings of the first clinical study of its kind were presented today at the annual meeting of the Radiological Society of North America (RSNA).

"Urinary incontinence is a major problem for women, and for an increasing number of men," said Ferdinand Frauscher, M.D., associate professor of radiology at the Medical University of Innsbruck and the head of uroradiology at University Hospital. "We believe we have developed a long-lasting and effective treatment that is especially promising because it is generated from the patient’s own body."

The stem cells are removed from a patient’s arm, cultured in a lab for six weeks, and then injected into the wall of the urethra and into the sphincter muscle. The result is increased muscle mass and contractility of the sphincter and a thicker urethra. Many patients have no urinary leakage within 24 hours after the 15- to 20-minute outpatient procedure.



Stress incontinence affects nearly 15 million people – primarily women – around the world. It occurs when the urethra narrows or becomes otherwise abnormal, or when the sphincter muscles that help open and close the urethra become weak or diminished, causing urine leakage when an individual exercises, coughs, sneezes, laughs or lifts heavy objects.

Twenty females, ages 36 to 84, who were experiencing minor to severe stress incontinence participated in the research. Muscle-derived stem cells were removed from each patient’s arm and cultured, or grown, using a patented technique that yielded 50 million new muscle cells (myoblasts) and 50 million connective tissue cells (fibroblasts) after six weeks. When implanted into the patient under general or local anesthetia, the new stem cells began to replicate the existing cells nearby. One year after the procedure, 18 of the study’s 20 patients remain continent.

"These are very intelligent cells," Dr. Frauscher said. "Not only do they stay where they are injected, but also they quickly form new muscle tissue and when the muscle mass reaches the appropriate size, the cell growth ceases automatically."

Since the stem cells must be in contact with urethra and sphincter tissue for the procedure to work, a major factor in the success of this treatment was the development of transurethral three-dimensional ultrasound. "With real-time ultrasound, we are able to see exactly where the new cells must be placed," Dr. Frauscher said.

Stem cells are unspecialized cells capable of renewing themselves through cell division. Scientists believe that adult stem cells are located in small numbers throughout the tissues of the human body, where they quietly reside until activated by disease or injury and begin dividing. In addition to repairing body tissue, stem cells can be induced to become cells for specialized functions of the body.

Dr. Frauscher said the cost of the stem cell procedure was comparable to two popular treatments for incontinence: the long-term purchase and use of absorbents, such as adult diapers, and collagen injections, which show improvement during the first six months but often result in symptoms returning after a year. Dr. Frauscher also said the stem cell treatment appears to be more successful with women at this time. For men, incontinence is often caused by prostate surgery, which may result in scar tissue formation, where the stem cells do not grow very well. In men without scar tissue stem cell therapy seems to work as well as in women, Dr. Frauscher said.
Co-authors of the Austrian study are Andrea Klauser, M.D., Dieter Zur Nedden, M.D., Leo Pallwein, M.D., Rainer Marksteiner, Ph.D., Hannes Strasser, M.D., and Georg Bartsch, M.D.

Maureen Morley | EurekAlert!
Further information:
http://www.rsna.org

More articles from Life Sciences:

nachricht Cloud Formation: How Feldspar Acts as Ice Nucleus
09.12.2016 | Karlsruher Institut für Technologie

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>