Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Patients’ own stem cells used to cure incontinence


Austrian researchers are successfully treating incontinent women with the patient’s own muscle-derived stem cells. The findings of the first clinical study of its kind were presented today at the annual meeting of the Radiological Society of North America (RSNA).

"Urinary incontinence is a major problem for women, and for an increasing number of men," said Ferdinand Frauscher, M.D., associate professor of radiology at the Medical University of Innsbruck and the head of uroradiology at University Hospital. "We believe we have developed a long-lasting and effective treatment that is especially promising because it is generated from the patient’s own body."

The stem cells are removed from a patient’s arm, cultured in a lab for six weeks, and then injected into the wall of the urethra and into the sphincter muscle. The result is increased muscle mass and contractility of the sphincter and a thicker urethra. Many patients have no urinary leakage within 24 hours after the 15- to 20-minute outpatient procedure.

Stress incontinence affects nearly 15 million people – primarily women – around the world. It occurs when the urethra narrows or becomes otherwise abnormal, or when the sphincter muscles that help open and close the urethra become weak or diminished, causing urine leakage when an individual exercises, coughs, sneezes, laughs or lifts heavy objects.

Twenty females, ages 36 to 84, who were experiencing minor to severe stress incontinence participated in the research. Muscle-derived stem cells were removed from each patient’s arm and cultured, or grown, using a patented technique that yielded 50 million new muscle cells (myoblasts) and 50 million connective tissue cells (fibroblasts) after six weeks. When implanted into the patient under general or local anesthetia, the new stem cells began to replicate the existing cells nearby. One year after the procedure, 18 of the study’s 20 patients remain continent.

"These are very intelligent cells," Dr. Frauscher said. "Not only do they stay where they are injected, but also they quickly form new muscle tissue and when the muscle mass reaches the appropriate size, the cell growth ceases automatically."

Since the stem cells must be in contact with urethra and sphincter tissue for the procedure to work, a major factor in the success of this treatment was the development of transurethral three-dimensional ultrasound. "With real-time ultrasound, we are able to see exactly where the new cells must be placed," Dr. Frauscher said.

Stem cells are unspecialized cells capable of renewing themselves through cell division. Scientists believe that adult stem cells are located in small numbers throughout the tissues of the human body, where they quietly reside until activated by disease or injury and begin dividing. In addition to repairing body tissue, stem cells can be induced to become cells for specialized functions of the body.

Dr. Frauscher said the cost of the stem cell procedure was comparable to two popular treatments for incontinence: the long-term purchase and use of absorbents, such as adult diapers, and collagen injections, which show improvement during the first six months but often result in symptoms returning after a year. Dr. Frauscher also said the stem cell treatment appears to be more successful with women at this time. For men, incontinence is often caused by prostate surgery, which may result in scar tissue formation, where the stem cells do not grow very well. In men without scar tissue stem cell therapy seems to work as well as in women, Dr. Frauscher said.
Co-authors of the Austrian study are Andrea Klauser, M.D., Dieter Zur Nedden, M.D., Leo Pallwein, M.D., Rainer Marksteiner, Ph.D., Hannes Strasser, M.D., and Georg Bartsch, M.D.

Maureen Morley | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>