Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Pain reliever may help treat life-threatening childhood disease


A drug withdrawn from pharmacy shelves over 20 years ago may point the way to a new treatment for spinal muscular atrophy, or SMA, a muscle-wasting and often life-threatening childhood disease.

A new study suggests that the drug, called indoprofen, increases the production of a protein that is key to the survival of the nerve cells affected by the disease. Indoprofen was taken off the market in the early 1980s due to reports of serious gastrointestinal reactions as well as reports that the drug caused cancer in laboratory rats. Researchers are now looking into ways to modify the drug to make it less toxic to humans, said Arthur Burghes, a study co-author and a professor of molecular and cellular biochemistry at Ohio State University.

While SMA strikes only about one in 6,000 newborn Americans each year, it is the leading genetic cause of infant and toddler death in the United States as well as Western Europe. There is no cure or standard treatment, and children with the most severe form of the disease usually die before their second birthday. Motor neurons – nerve cells that send signals from the spinal cord to muscles throughout the body – rapidly deteriorate in SMA due to reduced levels of survival motor neuron (SMN) protein. Patients with the disease lack SMN1, a gene that produces SMN protein. For reasons that aren’t clear, this protein deficiency affects only motor neurons of the spinal cord – all other cells in the body function normally.

SMA patients do have one or more copies of SMN2, a gene that produces low levels of SMN protein. But these levels aren’t high enough to stop SMA’s deleterious effects on spinal motor neurons. Laboratory experiments using indoprofen to treat human fibroblast cells resulted in a 13 percent increase in SMN protein production in the cells. "This increase is sort of like giving an additional SMN2 gene to a patient – it would give the patient about 13 to 15 percent more protein," Burghes said. "While this additional protection wouldn’t cure the disease, it could lessen the severity of symptoms."

The study appears in the current issue of the journal Chemistry and Biology. Burghes worked with a team of scientists from Columbia University, the National Institutes of Health, the University of Massachusetts Medical School and a hospital in the United Kingdom. Brent Stockwell, the study’s principal investigator, is a researcher at Columbia University.

The researchers screened 47,000 chemical compounds to find ones that would boost SMN2’s protein production capabilities. Included in this group were a number of non-steroidal anti-inflammatory drugs (NSAIDs), such as ibuprofen. Out of all the compounds screened, indoprofen was the only drug – including the only NSAID – that showed an effect. Researchers used human fibroblasts taken from patients with Type I SMA, the most severe form of the disease. While SMA doesn’t harm fibroblasts, the cells still lack the SMN1 gene. "We can’t extract spinal neurons from humans, and the fibroblasts gave us a pretty good idea of indoprofen’s affect on human cells," Burghes said.

SMN protein production increased by 13 percent in the treated fibroblasts.

"Theoretically, children with less severe forms of SMA may get even more protection than this, since these children have more copies of the SMN2 gene than do children with the most severe form," Burghes said.

The researchers also tested indoprofen’s effects on mice pregnant with SMA offspring. "What is still unclear is at what point motor neurons most need the additional SMN protein," Burghes said. "Should we give treatment once a patient has symptoms, before the symptoms start, or even in utero? We just don’t know." Even so, indoprofen still gives researchers a good starting point for creating drugs to help treat SMA, he said. "The next step is to work on modifying the drug to make it an optimal compound for treating SMA, and to try to find other compounds that work in a similar way," Burghes said. "Chemical modification of indoprofen will hopefully help us create a better drug."

This work was funded by grants from Andrew’s Buddies, Families of SMA and the National Institutes of Health. Work in Burghes’ laboratory has also been supported by the Miracle for Madison fund at Ohio State.

Arthur Burghes | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>