Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antibiotic rifampicin shows promise for fighting Parkinson’s disease in lab tests

30.11.2004


Researchers at the University of California, Santa Cruz, have shown that rifampicin, an antibiotic used to treat leprosy and tuberculosis, can prevent the formation of protein fibrils associated with the death of brain cells in people with Parkinson’s disease. The drug also dissolved existing fibrils in laboratory tests.



The researchers studied the effects of rifampicin in test tube experiments and are currently doing studies with cell cultures and mice to see if the same effects occur in living cells. Although these are just the first steps along the path toward clinical studies in humans, the findings suggest that rifampicin and related compounds might be effective in preventing fibril formation and associated neurological damage in patients with Parkinson’s disease, said Anthony Fink, professor of chemistry and biochemistry at UCSC. "Clearly, more work is needed to determine if this would work therapeutically, but if it does it would probably be most useful as a prophylactic therapy used in the early stages of the disease before there is general neurological damage," Fink said.

The research was carried out by a team of scientists in Fink’s lab, including postdoctoral researchers Jie Li, Min Zhu, and Sudha Rajamani and research associate Vladimir Uversky. Li is first author of a paper describing their results in the November issue of the journal Chemistry and Biology, which is mailed and published online on November 29.


Aggregation of the protein known as alpha-synuclein into insoluble fibrils is thought to be a critical step in the development of Parkinson’s disease, a progressive movement disorder resulting from the death of nerve cells in the brain that produce the neurotransmitter dopamine. Deposits called Lewy bodies, composed mostly of alpha-synuclein fibrils, appear in affected nerve cells, but the connection between the fibrils and cell death remains controversial, Fink said. "There are two schools of thought: One is that the fibrils themselves are toxic, and the other is that smaller precursors of the fibrils formed earlier in the process are toxic and cause the neurons to die," he said.

Fink’s group found that rifampicin stabilized alpha-synuclein in a soluble form, both as single molecules and in small, soluble clumps of the protein, thereby preventing the formation of fibrils. Furthermore, addition of the drug to already-formed fibrils of alpha-synuclein resulted in disaggregation of the fibrils into soluble clumps and single molecules. Fink noted that preliminary data from experiments in cell cultures and in mice indicate that the soluble clumps of alpha-synuclein formed in the presence of rifampicin are nontoxic. "The disaggregation of existing fibrils is probably the most interesting and novel finding in this study. If it works in people, that would really open up the possibility of stopping the progression of Parkinson’s disease when it is first diagnosed," he said.

The researchers used several different techniques to study the mechanism underlying rifampicin’s effects on alpha-synuclein. They found that the drug and its breakdown products bind tightly to alpha-synuclein, possibly even reacting with it to form a stable compound. Their findings with rifampicin are very similar to previous research in Fink’s lab with the compound baicalein, a flavonoid that also inhibits fibril formation and disaggregates existing fibrils of alpha-synuclein. Those results were published in June in the Journal of Biological Chemistry. "We wanted to look at rifampicin because it is an already-approved drug that is similar to baicalein in key parts of its molecular structure," Fink said.

Research in other laboratories has found that rifampicin may also prevent the formation of the protein deposits that characterize Alzheimer’s disease, which are composed of a different protein from alpha-synuclein. In addition, epidemiological studies of leprosy patients have indicated that patients treated for several years with rifampicin had a lower probability of developing senile dementia. "Dementia is associated with Alzheimer’s disease and with about one third of patients with Parkinson’s disease. But no studies have looked specifically at Parkinson’s disease in people taking this drug," Fink said.

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>