Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new species of amyloid peptide

26.11.2004


Scientists have identified a new, longer species of amyloid â-peptide that has the potential to be a new target for the treatment of Alzheimer’s disease. The research appears as the "Paper of the Week" in the December 3 issue of the Journal of Biological Chemistry, an American Society for Biochemistry and Molecular Biology journal.



One of the characteristic features of Alzheimer’s disease is the deposition of amyloid â-peptides in the brain. These amyloid â-peptides are derived from a large amyloid precursor protein through a series of cleavage events. Under normal conditions, cleavage first by á-secretase and then by ã-secretase results in a soluble ectodomain, a short peptide called p3, and an intracellular C-terminal domain, none of which are amyloidogenic. Alternatively, amyloid precursor protein can be processed by the enzymes â-secretase and ã-secretase to produce a soluble ectodomain along with the full-length amyloidogenic amyloid â-peptide and the intracellular C-terminal domain.

Although amyloid precursor protein is found in many cells, its normal biological function is not well understood. "It has been suggested that amyloid precursor protein may function as a receptor or growth factor precursor," notes Dr. Xuemin Xu of The University of Tennessee. "Recent studies also suggest that the intracellular C-terminal domain of the amyloid precursor protein may function as a transcription factor."


While the exact pathogenic role of amyloid â-peptide in Alzheimer’s disease has not yet been definitely established, accumulating evidence supports the hypothesis that amyloid â-peptide production and deposition in the brain could be a causative event in Alzheimer’s disease. Dr. Xu explains that the literature indicates amyloid â-peptide itself could be toxic to synapses and the accumulation of amyloid â-peptide could initiate a series of events contributing to cell death, including activation of cell death programs, oxidation of lipids and disruption of cell membranes, an inflammatory response, and possibly neurofibrillary tangle formation, which is a close correlate of neuron loss. Therefore, the problem of production, accumulation, and clearance of amyloid â-peptide in the brain emerges as one of the possible rational approaches for the treatment of Alzheimer’s disease.

Generally, amyloid â-peptides are around 39-43 amino acid long. Studies have shown that the longer amyloid â-peptides are more amyloidogenic and more pathogenic than the shorter ones. Now, Dr. Xu and his colleagues have discovered a new species of amyloid â-peptide that is 46 amino acids long, called Aâ46. This Aâ46 peptide is produced by ã-secretase at a novel cleavage site, the æ-site. This site also happens to be the site of a mutation found in early-onset familial Alzheimer’s disease called the APP717 or London mutation.

"Another well characterized Alzheimer’s disease-linked amyloid precursor protein mutation, the Swedish mutation, also occurs at a major cleavage site, the â-cleavage site at the N-terminus of amyloid â-peptide," adds Dr. Xu. "Studies have shown that Swedish mutation at the â-cleavage site makes the amyloid precursor protein more susceptible to â-secretase activity. The finding that æ-cleavage site is the APP717 mutation site suggests that the APP717 mutation may cause enhanced production of the longer amyloid â-peptide, Aâ42, by influencing the æ-cleavage. Therefore, this finding may open a new avenue for studying the mechanism by which APP717 mutations cause enhanced production of the longer amyloid â-peptide."

Dr. Xu and his colleagues also discovered that ã-secretase cleavage at the new æ-site is specifically inhibited by compounds known as transition state analogs, but is less affected by compounds known as non-transition state inhibitors. Specifically, some of these inhibitors, which were previously known to inhibit the formation of secreted amyloid â-peptides, were found to cause an intracellular accumulation of an even longer amyloid â-peptide species, Aâ46. "These novel findings provide information important for the strategy of prevention and treatment of Alzheimer’s disease, aimed at the design of ã-secretase inhibitors," concludes Dr. Xu. "Since amyloid â-peptide is produced by the sequential actions of â- and ã-secretases, inhibition of these secretases to reduce the production of amyloid â-peptide is believed to be one of the more promising avenues of treatment of the disease. To date, more than one dozen ã-secretase inhibitors have been developed or identified."

Nicole Kresge | EurekAlert!
Further information:
http://www.asbmb.org
http://www.jbc.org

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>