Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heart protein could be used to repair damage caused by heart attack

25.11.2004


A protein that the heart produces during its development could be redeployed after a heart attack to help the organ repair itself, researchers at UT Southwestern Medical Center at Dallas have found.



The mouse-study findings could eventually lead to new treatments for heart disease in humans and could even change the way healthcare providers respond to people suffering from heart attacks. The research appears today’s edition of Nature and is available online. "If the protein has a similar effect in humans as it does in mice, the impact by sheer volume is great – nearly 1 million people have heart attacks every year just in the United States," said Dr. Deepak Srivastava, professor of molecular biology and pediatrics and the study’s senior author. "The delivery is very simple and avoids many of the problems of using stem cells."

While more common in adults, heart disease is the leading noninfectious cause of death in children younger than one year. Heart disease in children is usually caused by developmental abnormalities. The protein, Thymosin beta-4, is expressed by embryos during the heart’s development. It encourages the migration of heart cells and affects those cells’ survivability. The new findings show that the protein prevents cell death after an experimentally-induced heart attack and limits the degree of scar tissue formation. Thymosin beta-4 is already used in clinical trials to promote wound healing on the skin. As a result, the protein could enter clinical trials for treating the heart in the very near future, said Dr. Srivastava, co-director of the March of Dimes Birth Defects Center at UT Southwestern.


During their study, UT Southwestern researchers discovered that Thymosin beta-4 works in conjunction with two other proteins to promote survival and migration of heart muscle cells by activating the protein Akt/Protein Kinase B. Akt/PKB, when active, promotes cell survival.

After studying the activity of cells in culture, researchers created a mouse model by tying off the coronary artery of 58 adult mice, simulating a heart attack. Half of the mice were given Thymosin beta-4 systemically, directly into the heart, or through both routes immediately after the ligation. The other half were given control injections of saline immediately after the artery was tied off. Researchers found that Thymosin beta-4 caused fewer cells in the affected part of the heart to die, resulting in improved function even several weeks after the heart attack. Researchers now believe that Thymosin beta-4 changes cell metabolism to create stronger heart muscle cells that can resist the low oxygen conditions after a heart attack.

The next step, Dr. Srivastava said, is to determine the most effective dose, the optimal time to administer Thymosin beta-4 and how long after an attack the protein can be given to be effective.

Other UT Southwestern researchers involved were Dr. Ildiko Bock-Marquette, a postdoctoral researcher in pediatrics and co-lead author; Ankur Saxena, graduate student research assistant in the genetics and development program and co-lead author; Dr. J. Michael DiMaio, assistant professor of cardiovascular and thoracic surgery; Michael White, a research assistant in cardiovascular and thoracic surgery; and Glenn Adams IV, a research technician in cardiovascular and thoracic surgery.

The National Heart, Lung and Blood Institute of the National Institutes of Health, the March of Dimes Birth Defects Foundation, the American Heart Association and the Donald W. Reynolds Clinical Cardiovascular Research Center funded the study.

Staishy Bostick Siem | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>