Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heart protein could be used to repair damage caused by heart attack

25.11.2004


A protein that the heart produces during its development could be redeployed after a heart attack to help the organ repair itself, researchers at UT Southwestern Medical Center at Dallas have found.



The mouse-study findings could eventually lead to new treatments for heart disease in humans and could even change the way healthcare providers respond to people suffering from heart attacks. The research appears today’s edition of Nature and is available online. "If the protein has a similar effect in humans as it does in mice, the impact by sheer volume is great – nearly 1 million people have heart attacks every year just in the United States," said Dr. Deepak Srivastava, professor of molecular biology and pediatrics and the study’s senior author. "The delivery is very simple and avoids many of the problems of using stem cells."

While more common in adults, heart disease is the leading noninfectious cause of death in children younger than one year. Heart disease in children is usually caused by developmental abnormalities. The protein, Thymosin beta-4, is expressed by embryos during the heart’s development. It encourages the migration of heart cells and affects those cells’ survivability. The new findings show that the protein prevents cell death after an experimentally-induced heart attack and limits the degree of scar tissue formation. Thymosin beta-4 is already used in clinical trials to promote wound healing on the skin. As a result, the protein could enter clinical trials for treating the heart in the very near future, said Dr. Srivastava, co-director of the March of Dimes Birth Defects Center at UT Southwestern.


During their study, UT Southwestern researchers discovered that Thymosin beta-4 works in conjunction with two other proteins to promote survival and migration of heart muscle cells by activating the protein Akt/Protein Kinase B. Akt/PKB, when active, promotes cell survival.

After studying the activity of cells in culture, researchers created a mouse model by tying off the coronary artery of 58 adult mice, simulating a heart attack. Half of the mice were given Thymosin beta-4 systemically, directly into the heart, or through both routes immediately after the ligation. The other half were given control injections of saline immediately after the artery was tied off. Researchers found that Thymosin beta-4 caused fewer cells in the affected part of the heart to die, resulting in improved function even several weeks after the heart attack. Researchers now believe that Thymosin beta-4 changes cell metabolism to create stronger heart muscle cells that can resist the low oxygen conditions after a heart attack.

The next step, Dr. Srivastava said, is to determine the most effective dose, the optimal time to administer Thymosin beta-4 and how long after an attack the protein can be given to be effective.

Other UT Southwestern researchers involved were Dr. Ildiko Bock-Marquette, a postdoctoral researcher in pediatrics and co-lead author; Ankur Saxena, graduate student research assistant in the genetics and development program and co-lead author; Dr. J. Michael DiMaio, assistant professor of cardiovascular and thoracic surgery; Michael White, a research assistant in cardiovascular and thoracic surgery; and Glenn Adams IV, a research technician in cardiovascular and thoracic surgery.

The National Heart, Lung and Blood Institute of the National Institutes of Health, the March of Dimes Birth Defects Foundation, the American Heart Association and the Donald W. Reynolds Clinical Cardiovascular Research Center funded the study.

Staishy Bostick Siem | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht 'Lipid asymmetry' plays key role in activating immune cells
20.02.2018 | Biophysical Society

nachricht New printing technique uses cells and molecules to recreate biological structures
20.02.2018 | Queen Mary University of London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>