Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Visualizing the end of the human genome

24.11.2004


Scientists have glimpsed the three-dimensional structure of a protein that protects the ends of human chromosomes, a function that is essential for normal cell division and survival. By visualizing the protein as it surrounds the end of a chromosome, the scientists have learned how the protein homes in on a specific DNA sequence and acts like a protective cap to prevent erosion of chromosome ends.



The researchers, led by Howard Hughes Medical Institute President Thomas R. Cech, whose laboratory is at the University of Colorado at Boulder, published their findings in an advance online publication in Nature Structural and Molecular Biology on November 21, 2004. Ming Lei and Elaine R. Podell in Cech’s lab were co-authors. According to Cech, the findings raise new questions about essential cellular functions taking place at the end of the chromosome.

During normal DNA replication, the very ends of a DNA molecule are lost. In order to prevent erosion, chromosomes are capped with a specialized region of DNA known as a telomere – a short, repetitious DNA sequence that does not code for any protein. In humans, an entire telomere is thousands of base pairs long, and is made up of a repeating sequence of six nucleotides. The final 100 to 300 nucleotides at the very end extend beyond the double helix as a single-stranded DNA "tail." The telomeres of normal cells gradually become shorter and shorter with each cell division, a characteristic sign of cellular aging. But cells also possess a unique enzyme known as telomerase that can lengthen telomeres by adding DNA to the ends of the chromosome using its own RNA template. In most cells, telomerase activity is very low after embryonic development, and regulation of telomerase is critical, because too much telomerase activity can promote tumor development.


In 2001, Dr. Peter Baumann in Cech’s laboratory discovered POT1 (for "protection of telomeres"), the only protein known to bind to human telomeric DNA tails. Pot1 plays an important role in capping the ends of chromosomes and in regulating telomere length. "Before that discovery," he said, "people weren’t even in agreement that there was a protein at the very ends of human chromosomes." At the same time, Cech’s team found a version of the POT1 protein in fission yeast. Other versions of POT1 have since been found in plants and mice – each recognizing a telomeric sequence that is unique to that organism. POT1 is critical to normal cell division and survival; experiments in fission yeast have shown that without it, most cells die immediately. Cells that do manage to survive quickly lose their telomeres, which interferes with normal cell division and eventually leads to massive DNA errors and abnormal, circular chromosomes. In human cells grown in the laboratory, too much POT1 can be disruptive, causing abnormal lengthening or shortening of telomeres.

Prior to determining the structure of human POT1, the researchers’ prediction of what it might look like was based on their understanding of the yeast version of the protein. In yeast, POT1 wraps around the end of a chromosome via a region known as an oligonucleotide/oligosaccharide-binding fold (OB-fold) – a shape found in many proteins that recognize and bind to DNA or RNA. The repeating six-nucleotide telomeric unit fits precisely within this fold, with many POT1 molecules binding to each chromosome end. Cech and his colleagues expected human POT1 to have a similar design, but the results of their biochemical analyses of the protein did not fit easily with this model. For example, when the scientists added the protein to short pieces of DNA containing the six nucleotides that make up a human telomeric repeat, the human POT1 protein bound poorly.

To their surprise, they found that POT1 required a stretch of telomeric DNA containing at least ten nucleotides for efficient recognition and binding of DNA. "We were confused about how ten nucleotides was even a binding site, because it wasn’t a multiple of six." Cech said. "If you need to coat something that has a repeating motif of six, you need to bind some multiple of six." To understand how human POT1 recognized and bound to the telomere, the researchers crystallized a form of POT1 bound to the critical ten-nucleotide segment of DNA. They then used x-ray diffraction to reveal the structure of the complex. Unexpectedly, they found that unlike the yeast version of the protein, human POT1 contained two distinct OB-folds. The grooves of the two folds align with one another, forming a continuous channel where the telomeric DNA can fit. They also learned that while the protein would bind to a ten-nucleotide sequence, the structure could also accommodate twelve nucleotides. "So it turns out it doesn’t bind one six, it binds two times six," Cech said. On a single chromosome end, he said, there might be eight to 24 POT1 molecules coating the DNA tail.

The structure of the complex suggests that the end of the chromosome is tightly protected by POT1, and the researchers were able to verify this with additional biochemical experiments. When the POT1-DNA complex was treated with a solution that would normally modify the DNA at specific sites, no such changes occurred – indicating that those sites were completely enclosed by the POT1 protein.

According to Cech, the findings raise important questions about the regulation of telomerase. When telomeric DNA is buried within POT1, telomerase cannot access the DNA to elongate the telomere. "This is something that could keep the cell from making telomeres all day long," he said. "We think this is one level at which telomerase is regulated." Therefore, he said, an important next step will be to determine the cellular mechanism that switches the telomere to the on state so that elongation can occur. "This is the end of the human genome. If you march out to the ends of human chromosome, what’s there? Now we know what is there – at least part of the time," Cech said. "There may be other states of the telomere, as well, but we think this is right where the action is."

Jennifer Michalowski | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>