Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Peripheral timekeeping: Mammalian cells outside the brain have their own circadian clocks

24.11.2004


Researchers have discovered that individual fibroblast cells contain independent, self-sustaining circadian (ca. 24 hr) clocks. Circadian clocks are important for synchronizing many physiological and behavioral processes to the day/night cycle.

For decades it has been known that a tiny cluster of brain cells known as the suprachiasmatic nucleus (SCN) is required for expression of circadian rhythms in mammals. When clock genes were identified in the late ’90s, they were found to be expressed rhythmically not only in SCN but also in many other tissues. Some of these studies used the firefly luciferase gene, introduced into cells with regulatory elements from a clock gene, so that cell cultures emitted light with a circadian rhythm. However, peripheral tissue rhythms tended diminish after a few cycles in culture, suggesting that they might depend on the central nervous system’s SCN to drive them.

In the new work, performed by researchers at The Scripps Research Institute and Northwestern University, Dr. David Welsh and colleagues used bioluminescence imaging to monitor circadian rhythms of clock gene expression from individual rat or mouse fibroblasts. Robust rhythms of single cells persisted without diminishing for at least 1–2 weeks in culture. Cells were partially synchronized by medium change at the start of an experiment, but because of different circadian periods drifted out of phase after several days, leading the ensemble rhythm to diminish. Thus, even cells outside the brain contain bona fide circadian clocks.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>