Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells’ repair skills might be link to cancer

24.11.2004


Johns Hopkins researchers say there is growing evidence that stem cells gone awry in their efforts to repair tissue damage could help explain why long-term irritation, such as from alcohol or heartburn, can create a breeding ground for certain cancers.



At the heart of their argument, outlined in the Nov. 18 issue of Nature, are two key chemical signals, called Hedgehog and Wnt ("wint"), that are active in the stem cells that repair damaged tissue. Recently and unexpectedly, the signals also have been found in certain hard to treat cancers, supporting an old idea that some cancers may start from normal stem cells that have somehow gone bad.

Over the last 10 years, researchers have found examples of these so-called cancer stem cells -- the cells within a tumor that are capable of regrowing the tumor -- in certain malignancies of the blood, breast and brain. In most cases, however, it’s not clear whether these cancer stem cells came from the tissue’s normal, primitive stem cells or from the tissue’s mature cells.


"Cancers associated with chronic irritation may be a good setting in which to determine whether stem cells are the starting place of tumors," says Phil Beachy, Ph.D., professor of molecular biology and genetics in Hopkins’ Institute for Basic Biomedical Sciences and a Howard Hughes Medical Institute investigator. "Successful therapy depends on targeting the cells that drive cancer’s growth and its spread, so we have to know which cells are important."

Chronic irritation damages tissues -- Helicobacter infection in the stomach leads to ulcers, for example, and chronic acid reflux (heartburn) erodes the lining of the esophagus. That damage triggers a repair process that requires tissue-specific stem cells to gather, multiply and eventually replace the damaged cells.

However, if recurring irritation and damage prevent the repair’s completion, those helpful stem cells, in theory, could accumulate mutations that push their growth out of control. Beachy and long-time collaborators and co-authors Sunil Karhadkar, M.D., and David Berman, M.D., Ph.D., suggest that chronic irritation might facilitate trapping of stem cells in a state of perpetual activation, and subsequent genetic or other changes in the cells may send them over the edge. "Normal stem-cell self-renewal is a tightly regulated process, so the question is how and whether such regulation is circumvented in cancer," says Beachy.

Beachy says the place to start looking is the activity and regulation of Hedgehog and Wnt, which are best known for their roles in embryonic development, because recent studies show they are key regulators of self-renewal in at least some of the body’s normal tissue stem cells and are active in numerous cancer types. "If these stem cells are the starting point of some cancers, multiple genetic and other changes may be required to trap the stem cell during chronic irritation, and perhaps many more changes to get the rapid growth of cancer," says Beachy. "We need to figure out what those changes might be."

Hedgehog activity has been found in certain cancers of the lung, brain, stomach, esophagus, skin, pancreas, bladder, muscle and prostate. Similarly, Wnt activity has been tied to certain cancers of the colon, liver, blood, bone and lung.

In experiments at Hopkins and elsewhere, blocking Hedgehog and Wnt in laboratory-grown cancer cells and in animals has been shown to kill cancer cells, so the pathways are potential targets for anti-cancer drugs. The researchers caution that Hedgehog and Wnt blockers could affect normal processes that use these signals, including normal tissue repair, although short-term studies in mice have not yet found toxic side effects, Beachy says.

Authors of the article are Beachy, Karhadkar and Berman, all of Johns Hopkins. The authors’ research is supported by the Howard Hughes Medical Institute, the National Institutes of Health, the Prostate Cancer Foundation and the Flight Attendant’s Medical Research Institute.

Joanna Downer | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>