Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells’ repair skills might be link to cancer

24.11.2004


Johns Hopkins researchers say there is growing evidence that stem cells gone awry in their efforts to repair tissue damage could help explain why long-term irritation, such as from alcohol or heartburn, can create a breeding ground for certain cancers.



At the heart of their argument, outlined in the Nov. 18 issue of Nature, are two key chemical signals, called Hedgehog and Wnt ("wint"), that are active in the stem cells that repair damaged tissue. Recently and unexpectedly, the signals also have been found in certain hard to treat cancers, supporting an old idea that some cancers may start from normal stem cells that have somehow gone bad.

Over the last 10 years, researchers have found examples of these so-called cancer stem cells -- the cells within a tumor that are capable of regrowing the tumor -- in certain malignancies of the blood, breast and brain. In most cases, however, it’s not clear whether these cancer stem cells came from the tissue’s normal, primitive stem cells or from the tissue’s mature cells.


"Cancers associated with chronic irritation may be a good setting in which to determine whether stem cells are the starting place of tumors," says Phil Beachy, Ph.D., professor of molecular biology and genetics in Hopkins’ Institute for Basic Biomedical Sciences and a Howard Hughes Medical Institute investigator. "Successful therapy depends on targeting the cells that drive cancer’s growth and its spread, so we have to know which cells are important."

Chronic irritation damages tissues -- Helicobacter infection in the stomach leads to ulcers, for example, and chronic acid reflux (heartburn) erodes the lining of the esophagus. That damage triggers a repair process that requires tissue-specific stem cells to gather, multiply and eventually replace the damaged cells.

However, if recurring irritation and damage prevent the repair’s completion, those helpful stem cells, in theory, could accumulate mutations that push their growth out of control. Beachy and long-time collaborators and co-authors Sunil Karhadkar, M.D., and David Berman, M.D., Ph.D., suggest that chronic irritation might facilitate trapping of stem cells in a state of perpetual activation, and subsequent genetic or other changes in the cells may send them over the edge. "Normal stem-cell self-renewal is a tightly regulated process, so the question is how and whether such regulation is circumvented in cancer," says Beachy.

Beachy says the place to start looking is the activity and regulation of Hedgehog and Wnt, which are best known for their roles in embryonic development, because recent studies show they are key regulators of self-renewal in at least some of the body’s normal tissue stem cells and are active in numerous cancer types. "If these stem cells are the starting point of some cancers, multiple genetic and other changes may be required to trap the stem cell during chronic irritation, and perhaps many more changes to get the rapid growth of cancer," says Beachy. "We need to figure out what those changes might be."

Hedgehog activity has been found in certain cancers of the lung, brain, stomach, esophagus, skin, pancreas, bladder, muscle and prostate. Similarly, Wnt activity has been tied to certain cancers of the colon, liver, blood, bone and lung.

In experiments at Hopkins and elsewhere, blocking Hedgehog and Wnt in laboratory-grown cancer cells and in animals has been shown to kill cancer cells, so the pathways are potential targets for anti-cancer drugs. The researchers caution that Hedgehog and Wnt blockers could affect normal processes that use these signals, including normal tissue repair, although short-term studies in mice have not yet found toxic side effects, Beachy says.

Authors of the article are Beachy, Karhadkar and Berman, all of Johns Hopkins. The authors’ research is supported by the Howard Hughes Medical Institute, the National Institutes of Health, the Prostate Cancer Foundation and the Flight Attendant’s Medical Research Institute.

Joanna Downer | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>