Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International research team identifies gene that promotes prostate cancer

24.11.2004


Together with an international research team, researchers from VTT Technical Research Centre of Finland have developed an effective method for the screening and identification of genes that under normal conditions suppress cancer growth. The method enabled the discovery of a new cancer gene, which, when damaged, may promote prostate cancer. Prostate cancer is the most diagnosed form of cancer in men; it is also becoming increasingly common. Thus, this finding may have great significance for the development of new forms of therapy.



The researchers developed a method for the effective screening and identification of tumor growth-suppressing genes and their mutations. With the new technique, it is possible to identify potential tumor-suppressor genes from among the approximately 25,000 human genes and accelerate research significantly. The new microarray-based method allows the efficient screening of thousands of genes in a single laboratory experiment.

The effectiveness of the method is due to the combination of two screening methods: the NMD (nonsense-mediated mRNA decay) microarray technique is used to screen for mutated genes, while the CGH (comparative genomic hybridization) microarray technique is used to screen for DNA copy number losses from the same sample. By combining these findings researchers can efficiently pinpoint those genes whose function has failed in cancer cells


Using this novel approach the researchers were able to find errors in the EPHB2 gene. The gene encodes a cell membrane receptor, which has a role in the intracellular communication, and is required for cell differentiation, cell mobility and maintenance of correct tissue structure. A defect in the EPHB2 gene function may thus cause tissue dysorganization and promote the proliferation and metastatis of cancer cells. This finding helps to provide a better understanding of the molecular mechanisms involved in the development and progression of cancer, which is an essential step in the development of novel anti-cancer therapies.

Researchers found mutations in EPHB2 gene in 8% of prostate cancer patients, particularly in the metastatic tumors. The discovery is hoped to facilitate the development of novel therapeutics for prostate cancer. The researches aim to develop the novel NMD-CGH microarray method further and apply it for new tumor-suppressor gene discovery approaches in prostate cancer and other cancer types.

Launched three years ago at the National Institutes of Health (NIH) in the United States, the research was continued in Finland at VTT in the Medical Biotechnology Department, in collaboration with a research team at the Translational Genomics Research institute in the US.

Prostate cancer is the most common cancer in men, the incidence of which has shown an increasing trend over the past few years. The origins of prostate cancer remain largely unknown, however, researchers believe that genetic errors occurring in prostate cells during the aging process have a significant impact. The loss of function of the tumor-suppressor genes plays a major role in the development of cancer. So far approximately twenty such genes have been identified in the human genome. Their normal function ensures the correct growth of cells and prevents the proliferation of cancer cells in the body.

Maija Wolf, PhD | alfa
Further information:
http://www.vtt.fi

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>