Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International research team identifies gene that promotes prostate cancer

24.11.2004


Together with an international research team, researchers from VTT Technical Research Centre of Finland have developed an effective method for the screening and identification of genes that under normal conditions suppress cancer growth. The method enabled the discovery of a new cancer gene, which, when damaged, may promote prostate cancer. Prostate cancer is the most diagnosed form of cancer in men; it is also becoming increasingly common. Thus, this finding may have great significance for the development of new forms of therapy.



The researchers developed a method for the effective screening and identification of tumor growth-suppressing genes and their mutations. With the new technique, it is possible to identify potential tumor-suppressor genes from among the approximately 25,000 human genes and accelerate research significantly. The new microarray-based method allows the efficient screening of thousands of genes in a single laboratory experiment.

The effectiveness of the method is due to the combination of two screening methods: the NMD (nonsense-mediated mRNA decay) microarray technique is used to screen for mutated genes, while the CGH (comparative genomic hybridization) microarray technique is used to screen for DNA copy number losses from the same sample. By combining these findings researchers can efficiently pinpoint those genes whose function has failed in cancer cells


Using this novel approach the researchers were able to find errors in the EPHB2 gene. The gene encodes a cell membrane receptor, which has a role in the intracellular communication, and is required for cell differentiation, cell mobility and maintenance of correct tissue structure. A defect in the EPHB2 gene function may thus cause tissue dysorganization and promote the proliferation and metastatis of cancer cells. This finding helps to provide a better understanding of the molecular mechanisms involved in the development and progression of cancer, which is an essential step in the development of novel anti-cancer therapies.

Researchers found mutations in EPHB2 gene in 8% of prostate cancer patients, particularly in the metastatic tumors. The discovery is hoped to facilitate the development of novel therapeutics for prostate cancer. The researches aim to develop the novel NMD-CGH microarray method further and apply it for new tumor-suppressor gene discovery approaches in prostate cancer and other cancer types.

Launched three years ago at the National Institutes of Health (NIH) in the United States, the research was continued in Finland at VTT in the Medical Biotechnology Department, in collaboration with a research team at the Translational Genomics Research institute in the US.

Prostate cancer is the most common cancer in men, the incidence of which has shown an increasing trend over the past few years. The origins of prostate cancer remain largely unknown, however, researchers believe that genetic errors occurring in prostate cells during the aging process have a significant impact. The loss of function of the tumor-suppressor genes plays a major role in the development of cancer. So far approximately twenty such genes have been identified in the human genome. Their normal function ensures the correct growth of cells and prevents the proliferation of cancer cells in the body.

Maija Wolf, PhD | alfa
Further information:
http://www.vtt.fi

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>