Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The University of Manchester uses crystals to help battle deadly diseases

23.11.2004


A groundbreaking technique developed at The University of Manchester, which uses crystals to map ‘invisible’ parts of molecules, is set to revolutionise drug discovery.



The technique, which involves sending beams of neutrons through crystals at freezing temperatures, just a few degrees above ’absolute zero’, will for the first time allow scientists to see complete structures of protein molecules, right down to the last atom.

The problem faced by scientists using current methods is the fact that it is not possible to detect every atom in a protein’s molecular structure, and the structures therefore are incomplete – making drug design more difficult.


Professor John R. Helliwell, Professor of Structural Chemistry, who led the research, said: “This has raised the stakes in the world of drug discovery. This methodology will make research in the field more powerful, more effective and more efficient.”

The breakthrough allows the molecular structures of proteins, the chemical catalysts in the body, to be studied in complete detail. In fact, experiments at the University have shown that the number of visible atoms in a molecule doubled when using the technique, compared to techniques used today.

Protein Crystallography is an important tool used to determine the three-dimensional structures of proteins. Once a pharmaceutical company has this information, it is able to tailor drugs to target specific proteins, eg interfering with the function of such proteins in infectious agents like tuberculosis - enabling the production of more effective medicines.

‘Ultra-Cold Neutron Protein Crystallography’ improves on current methods by probing protein structures with neutrons at temperatures of 15K (-258 degrees C), dramatically increasing the number of visible atoms. The process especially reveals the hydrogen atoms, which hold the key to many chemical reactions, and because of their low mass, are rarely revealed by current methods like X-Ray Crystallography even if carried out at freezing temperatures.

Professor Helliwell added: “As well as the above advantages this makes other classes of experiments on proteins feasible. In particular, the comparison of protein structures at ultra-cold versus room temperature allows the details of atomic vibrations to be separated from structural disorders.”

“Another benefit to research that now becomes possible is that chemical reactions can be set running directly in the crystal and then freeze-trapped so as to probe the proteins in time with the neutron beam whilst the protein is actually in its functional state.”

Simon Hunter | alfa
Further information:
http://www.manchester.ac.uk

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>