Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fuzz-Free Strawberries Forecast with New Food Safety Treatment

23.11.2004


Open up a pint of strawberries from the grocery store, and more often than not you’ll find a fuzzy berry or two in the mix. A blast of chlorine dioxide gas, however, promises to not only keep those berries fuzz-free, but also to kill off harmful bacteria living on their surface more efficiently than methods currently used by the food industry, say Purdue University researchers.



"Strawberries are tricky," said Rich Linton, professor of food science and one of the leaders of the current study on decontaminating strawberries. "They’re notoriously difficult to clean, and their surface composition actually encourages bugs to grow."

Those bugs can include potentially lethal bacteria, such as E. coli, as well as viruses including hepatitis A, which caused an outbreak linked to frozen strawberries in 1996. "The issue with strawberries is that they’re easily contaminated," Linton said. "They’re grown in close association with soil, where they may pick up pathogens such as E. coil from manure-based fertilizers, and they’re hand-picked, providing another avenue for contamination."


Linton and his colleagues at Purdue’s Center for Food Safety Engineering, who already have demonstrated the efficacy of using chlorine dioxide gas to kill pathogens on the surface of apples and green peppers, have shown the treatment also removes significantly higher levels of pathogens than the current industry-standard chlorinated water rinse.

Linton’s study, published in the current issue of the Journal of Food Protection, compares two different chlorine dioxide treatments, called "batch processing" and "continuous processing." Both treatments provide greater than a 5-log, or 99.999 percent, reduction in the numbers of E. coli and Listeria monocytogenes on strawberry surfaces.

Food safety experts assess decontamination efficiency with a measurement called "log reduction," which indicates how much contamination can be reduced after a decontamination treatment. A log, or logarithm, is a power of ten; thus a 1-log reduction is a 90 percent reduction; a 2-log reduction is a 99 percent reduction, and a 5-log reduction is a 99.999 percent reduction.

While current methods for removing pathogens on strawberries yield about a 2.5 log reduction in bacteria levels, the Food and Drug Administration has stated produce treatments should achieve a 5-log reduction in pathogens.

Not only does Linton’s treatment significantly reduce the number of potentially harmful pathogens growing on strawberries, it also extends their shelf life without sacrificing quality attributes such as color and taste. "The berries last a lot longer after this treatment-in fact, we’ve had strawberries in the refrigerator for more than six weeks with no mold growth," Linton said. "If this process can give consumers even one or two more days before the strawberries they buy get fuzzy, that’s huge. Think about it - how many strawberries do you have to throw away in a pint? If we could reduce that number, it would be a great advantage for consumers and the industry."

The two methods Linton used differ in the way the berries are exposed to the chlorine dioxide. In a batch system, the strawberries are placed in a sealed container, and a set amount of chlorine dioxide gas is applied once and then allowed to remain in the chamber for a period of time. Continuous treatment involves constant delivery of gas into the chamber over time.

Batch treatment required higher concentrations of chlorine dioxide treatment for longer amounts of time than continuous treatment, but both methods achieved more than a 5-log reduction in pathogens, Linton said. He found that either 30 minutes of batch treatment, or 10 minutes of continuous treatment, produced effective levels of decontamination.

Linton’s team currently has funding through the United States Department of Agriculture to scale up this technology and further develop it for use by the food industry. "We see this technology as a potential intervention for security applied to our food system," Linton said. "It may be possible to develop this technology so that we can begin decontaminating produce while it’s in transit. "Much of our produce comes from other countries where we may have less control over sanitary practices in the field. If we could use technology like this to seal up produce and treat it as it travels from point A to point B, it’s a great application for protection of our nation’s food supply."

Also participating in this research were Yingchan Han, post-doctoral research associate; Travis Selby and Krista Schultze, graduate students in the Department of Food Science; and Phil Nelson, professor of food science. The U.S. Department of Agriculture Cooperative State esearch and Extension Service and the Food and Drug Administration provided funding for this work.

| newswise
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>