Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer Simulation Shows How Fibrils " Proteins That Cluster in Diseases " Form

23.11.2004


The NC State simulation shows randomly placed peptides forming a fibril.


To get a better look at how proteins gather into clusters called amyloid fibrils – which are associated with important human diseases such as Alzheimer’s, Parkinson’s and the so-called prion diseases like Mad Cow – researchers at North Carolina State University decided to make movies.

Dr. Carol Hall, Alcoa Professor of chemical engineering at NC State and Hung D. Nguyen, a graduate student in Hall’s lab, used a computer simulation technique, discontinuous molecular dynamics, to visualize the meanderings of small proteins called peptides. Movies of the simulation show that 96 randomly placed peptides spontaneously aggregate into what Hall calls a “sandwich” of layered protein sheets, similar to the amyloid fibrils discovered in diseased people and animals. Hall says that understanding how fibrils form in human or animal organs may lead to discoveries of how to slow or halt fibril formation.

The research was published in the Nov. 16 edition of Proceedings of the National Academy of Sciences. It is not known whether fibrils cause Alzheimer’s, Parkinson’s and the other so-called amyloid diseases, or whether they are just associated symptoms. In any event, the fibrils form plaques in human and animal organs, often the brain. Although it’s not clear if these plaques cause memory loss in Alzheimer’s patients, for instance, scientists are interested in finding out the mechanisms behind the formation of fibrils.



“All of these diseases – Alzheimer’s, Parkinson’s, ALS, Huntington’s – have the same unusual phenomena. Proteins – completely different proteins in each disease – assemble into ordered aggregates, amyloid fibrils, so that a vital organ, usually the brain, is crisscrossed by these structures,” Hall said. “This tells us that the problem has something to do with the general nature of proteins rather than with the specifics of the particular disease-associated proteins.”

Besides studying fibrils in the test tube, researchers would like to make computer models to view fibril formation. This is not possible using the traditional atomic-level protein folding simulation techniques – which follow the motions of every atom on every protein – because fibril formation takes a long time.

So Hall and Nguyen developed a less-detailed model of protein geometry and energetics and applied it to a relatively simple protein, polyalanine, which had been found to form fibrils in test tubes. With this approach, the NC State researchers were able to watch spontaneous fibril formation in about 60 hours on a fast computer. That’s much quicker than atomic-level simulations.

In the simulation movie, 12 to 96 peptides were initially scattered randomly across the computer screen. When set into motion, the researchers first saw groups of two to five proteins coming together and falling apart and eventually forming amorphous clumps that twist around each other, like a rope. These twisted structures began coming together, like the ingredients in a sandwich, layered above and below each other. In the end, the simulation showed a fibril-like structure with only a few outlying peptides refusing to aggregate.

Hall says her method of reducing the level of detail in her protein model just to the point where the key features that drive fibril formation remain and other features are neglected allows her to get a broad molecular-level picture of the fibril formation process.

Hall’s work is sponsored by the National Institutes of Health. She has recently been funded to attempt computer simulations of fibril formation by beta amyloids, the peptides that aggregate in Alzheimer’s disease.

Dr. Carol Hall | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>