Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer Simulation Shows How Fibrils " Proteins That Cluster in Diseases " Form

23.11.2004


The NC State simulation shows randomly placed peptides forming a fibril.


To get a better look at how proteins gather into clusters called amyloid fibrils – which are associated with important human diseases such as Alzheimer’s, Parkinson’s and the so-called prion diseases like Mad Cow – researchers at North Carolina State University decided to make movies.

Dr. Carol Hall, Alcoa Professor of chemical engineering at NC State and Hung D. Nguyen, a graduate student in Hall’s lab, used a computer simulation technique, discontinuous molecular dynamics, to visualize the meanderings of small proteins called peptides. Movies of the simulation show that 96 randomly placed peptides spontaneously aggregate into what Hall calls a “sandwich” of layered protein sheets, similar to the amyloid fibrils discovered in diseased people and animals. Hall says that understanding how fibrils form in human or animal organs may lead to discoveries of how to slow or halt fibril formation.

The research was published in the Nov. 16 edition of Proceedings of the National Academy of Sciences. It is not known whether fibrils cause Alzheimer’s, Parkinson’s and the other so-called amyloid diseases, or whether they are just associated symptoms. In any event, the fibrils form plaques in human and animal organs, often the brain. Although it’s not clear if these plaques cause memory loss in Alzheimer’s patients, for instance, scientists are interested in finding out the mechanisms behind the formation of fibrils.



“All of these diseases – Alzheimer’s, Parkinson’s, ALS, Huntington’s – have the same unusual phenomena. Proteins – completely different proteins in each disease – assemble into ordered aggregates, amyloid fibrils, so that a vital organ, usually the brain, is crisscrossed by these structures,” Hall said. “This tells us that the problem has something to do with the general nature of proteins rather than with the specifics of the particular disease-associated proteins.”

Besides studying fibrils in the test tube, researchers would like to make computer models to view fibril formation. This is not possible using the traditional atomic-level protein folding simulation techniques – which follow the motions of every atom on every protein – because fibril formation takes a long time.

So Hall and Nguyen developed a less-detailed model of protein geometry and energetics and applied it to a relatively simple protein, polyalanine, which had been found to form fibrils in test tubes. With this approach, the NC State researchers were able to watch spontaneous fibril formation in about 60 hours on a fast computer. That’s much quicker than atomic-level simulations.

In the simulation movie, 12 to 96 peptides were initially scattered randomly across the computer screen. When set into motion, the researchers first saw groups of two to five proteins coming together and falling apart and eventually forming amorphous clumps that twist around each other, like a rope. These twisted structures began coming together, like the ingredients in a sandwich, layered above and below each other. In the end, the simulation showed a fibril-like structure with only a few outlying peptides refusing to aggregate.

Hall says her method of reducing the level of detail in her protein model just to the point where the key features that drive fibril formation remain and other features are neglected allows her to get a broad molecular-level picture of the fibril formation process.

Hall’s work is sponsored by the National Institutes of Health. She has recently been funded to attempt computer simulations of fibril formation by beta amyloids, the peptides that aggregate in Alzheimer’s disease.

Dr. Carol Hall | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>