Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acid-resistant bug doesn’t give in to alcohol either

23.11.2004


’Don’t drink, don’t smoke, what does it do?’

A chemist at Washington University in St. Louis has found surprisingly tough enzymes in a bacterium that "just says no to acid." Acid resistance is a valued trait for both pills and human pathogens. The bacterium Acetobacter aceti makes unusually acid-resistant enzymes in spades, which could make the organism a source for new enzyme products and new directions in protein chemistry.

A. aceti has been used for millennia to make vinegar, at least since an indirect reference in the Old Testament Book of Numbers to "vinegar made from wine." But not until recently did anybody study the unusual biochemical features of the organism that allow it to survive and even thrive in very acidic conditions.



Joe Kappock, Ph.D., assistant professor of chemistry at Washington University in St. Louis couldn’t overlook this very promising bacterium. "The thing that piqued our interest was that this organism has this weird growth habit of making vinegar from ethanol (alcohol), which means it’s highly resistant to ethanol, which very few things grow in, and resistant to acetic acid (vinegar), which even fewer things grow in," Kappock said. "Important enzymes in this bug resist acid in a way almost all organisms cannot, and we’re trying to answer the question: ’How is this enzyme different?’"

That answer, Kappock said, could reveal many new important insights. Kappock discussed his research at the American Chemical Society’s Annual Meeting, held Aug. 23-25, 2004, in Philadelphia. Specifically, Kappock and his research group study the enzyme citrate synthase, one of the oldest enzymes in a cell. Citrate synthase is important because it initiates the citric acid cycle, or Kreb’s cycle, a biochemical pathway vitally important for energy production in the cells of organisms simple as bacteria and complex as humans.

There also are a couple of ways Acetobacter could produce industrially applicable information. "There are people who want to make more stable proteins," said Kappock. "There are increasing numbers of industrial processes that use enzymes, which are the ultimate green catalyst. The more things we can do with enzymes, the better for the environment, because they have no waste products."

Enzymes already are used in products as diverse as laundry detergents and various medications. According to Kappock, the more long-range goal is to involve insights from studies of this bacterium with the numerous diseases caused by protein mis-folding. Alzheimer’s disease, Lou Gehrig’s disease, and possibly even cataracts begin with mis-folded proteins. "A lot of times a mild acid-mediated unfolding of an enzyme precipitates these kinds of disease." Kappock said. "Insights from these marvelous Acetobacter enzymes might lead to making more stable enzymes or elucidating ways to treat these debilitating diseases. "There are a lot of things that this research could help, but it’s at a basic stage now."

Still, the research is promising enough to have been award both federal and private funding. Kappock is a little surprised that relatively few others have studied Acetobacter, given the common and widespread nature of the organism. "It’s literally garden-variety," he said. "Acetobacter clings to plant surfaces in the wild. For example, a big part of winemaking is excluding the grape skins from the wine because the bug lives there."

Plants, microorganisms, and their proteins are the bases for developing valuable drugs. "Many antibiotics are derived from soil organisms like bacteria that are trying to kill other bacteria," said Kappock.

Fortunately, in the case of Acetobacter, any useful enzymes it may provide should be completely harmless, just as it is to humans (besides ruining their wine). "I think it’s likely going to be a piece of a larger story," Kappock said. "What I’m hoping to get out of it is a better understanding of how proteins work. Our contribution is to find out how a couple of examples work and seeing if we can find general principles."

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht The world's tiniest first responders
21.06.2018 | University of Southern California

nachricht A new toxin in Cholera bacteria discovered by scientists in Umeå
21.06.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>