Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flies on crack

23.11.2004


New study isolates gene mutation responsive to cocaine



Researchers at the University of California, San Francisco (UCSF) and New York University have discovered a gene mutation in fruit flies that alters sensitivity to crack cocaine and also regulates their internal body clock. The findings, reported in the December issue of Public Library of Science (PLoS) Biology, may have implications for understanding innate differences in sensitivity to cocaine in humans, potentially providing targets for development of drugs to treat or prevent addiction.

Headed by UCSF’s Ulrike Heberlein, the research team discovered a mutation of the Drosophila LIM-only (Lmo) gene. Normal fruit flies increase their activity when exposed to low doses of crack cocaine over a one-minute period. At medium levels, fruit flies exhibit frenzied, jerky motions. At high doses, the flies become immobile. However, flies with the Lmo gene mutated were much more sensitive to crack cocaine and became immobile at much lower levels than normal fruit flies.


Heberlein’s group also showed that Lmo is normally produced in the pacemaker neurons that control 24-hour--or circadian--rhythms of sleep/wake cycles in flies. Comprising about 10 cells per hemisphere, these neurons provide the fly with an internal clock, driving circadian rhythms of behavior even in the absence of light. While Lmo is found throughout the body, it is enriched in the brain. By expressing normal Lmo in over-sensitive mutants, the researchers discovered that Lmo’s cocaine-related effects were localized to the circadian pacemaker neurons.

The researchers then asked if the Lmo mutations also affect the normal rhythms in circadian behavior. Subsequently, NYU’s Justin Blau, an assistant professor of biology, found that many Lmo mutant flies no longer had clear rhythms of sleep/wake cycles. Together, the two sets of findings showed that the new gene modulates sensitivity to cocaine within the cells of the fruit fly’s internal clock.

Previous researchers had only been able to demonstrate that cocaine enhances the mammalian brain’s ability to block re-uptake of dopamine by cells in a brain region called the nucleus acumbens. But numerous experiments show this is not the whole story. The latest study by Heberlein, Blau, and their colleagues reveal a more complex neurological process.

From 400 different mutants, they identified seven with an increased response to cocaine, and for two of these, the disrupted gene was the same--Lmo. The Lmo protein, whose levels were reduced by the mutations, is known to regulate certain transcription factors during development. However, no developmental defects were detected in the loss-of-function mutants that might explain the cocaine effect. They also found that a third mutation in the same gene, previously associated with disruption in wing formation in fruit flies, increased levels of the Lmo protein and decreased response to cocaine. Thus, they concluded that Lmo appears to play a central role in regulating cocaine sensitivity.

The researchers suggested that because Lmo-related proteins are found in mammalian brains, the results may have implications for understanding innate differences in sensitivity to cocaine in humans, potentially providing targets for development of drugs to treat or prevent addiction.

"It’s been established the some individuals may be predisposed to addiction," Blau added. "These findings suggest that a specific genetic make-up in humans could further explain why some individuals are more susceptible than others."

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>