Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Flies on crack


New study isolates gene mutation responsive to cocaine

Researchers at the University of California, San Francisco (UCSF) and New York University have discovered a gene mutation in fruit flies that alters sensitivity to crack cocaine and also regulates their internal body clock. The findings, reported in the December issue of Public Library of Science (PLoS) Biology, may have implications for understanding innate differences in sensitivity to cocaine in humans, potentially providing targets for development of drugs to treat or prevent addiction.

Headed by UCSF’s Ulrike Heberlein, the research team discovered a mutation of the Drosophila LIM-only (Lmo) gene. Normal fruit flies increase their activity when exposed to low doses of crack cocaine over a one-minute period. At medium levels, fruit flies exhibit frenzied, jerky motions. At high doses, the flies become immobile. However, flies with the Lmo gene mutated were much more sensitive to crack cocaine and became immobile at much lower levels than normal fruit flies.

Heberlein’s group also showed that Lmo is normally produced in the pacemaker neurons that control 24-hour--or circadian--rhythms of sleep/wake cycles in flies. Comprising about 10 cells per hemisphere, these neurons provide the fly with an internal clock, driving circadian rhythms of behavior even in the absence of light. While Lmo is found throughout the body, it is enriched in the brain. By expressing normal Lmo in over-sensitive mutants, the researchers discovered that Lmo’s cocaine-related effects were localized to the circadian pacemaker neurons.

The researchers then asked if the Lmo mutations also affect the normal rhythms in circadian behavior. Subsequently, NYU’s Justin Blau, an assistant professor of biology, found that many Lmo mutant flies no longer had clear rhythms of sleep/wake cycles. Together, the two sets of findings showed that the new gene modulates sensitivity to cocaine within the cells of the fruit fly’s internal clock.

Previous researchers had only been able to demonstrate that cocaine enhances the mammalian brain’s ability to block re-uptake of dopamine by cells in a brain region called the nucleus acumbens. But numerous experiments show this is not the whole story. The latest study by Heberlein, Blau, and their colleagues reveal a more complex neurological process.

From 400 different mutants, they identified seven with an increased response to cocaine, and for two of these, the disrupted gene was the same--Lmo. The Lmo protein, whose levels were reduced by the mutations, is known to regulate certain transcription factors during development. However, no developmental defects were detected in the loss-of-function mutants that might explain the cocaine effect. They also found that a third mutation in the same gene, previously associated with disruption in wing formation in fruit flies, increased levels of the Lmo protein and decreased response to cocaine. Thus, they concluded that Lmo appears to play a central role in regulating cocaine sensitivity.

The researchers suggested that because Lmo-related proteins are found in mammalian brains, the results may have implications for understanding innate differences in sensitivity to cocaine in humans, potentially providing targets for development of drugs to treat or prevent addiction.

"It’s been established the some individuals may be predisposed to addiction," Blau added. "These findings suggest that a specific genetic make-up in humans could further explain why some individuals are more susceptible than others."

James Devitt | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>