Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCI researchers use human embryonic stem cells to aid spinal cord injury repair

22.11.2004


Discovery shows stem cell-derived ‘insulation’ cells growing and functioning in a living system



For the first time, researchers have used human embryonic stem cells to create new insulating tissue for nerve fibers in a live animal model – a finding that has potentially important implications for treatment of spinal cord injury and multiple sclerosis.

Researchers at the UC Irvine Reeve-Irvine Research Center used human embryonic stem cells to create cells called oligodendrocytes, which are the building blocks of the myelin tissue that wraps around and insulates nerve fibers. This tissue is critical for maintenance of proper nerve signaling in the central nervous system, and, when it is stripped away through injury or disease, sensory and motor deficiencies and, in some cases, paralysis result.


In this study, neurologist Hans Keirstead and colleagues at UCI and the Geron Corporation devised a novel technique that allows human embryonic stem cells to differentiate into high-purity, early-stage oligodendrocyte cells. The researchers then injected these cells into the spinal cords of mice genetically engineered to have no myelin tissue.

After transplantation into mice, the early-stage cells formed into full-grown oligodendrocyte cells and migrated to appropriate neuronal sites within the spinal cord. More importantly, the researchers discovered the oligodendrocyte cells forming patches of myelin’s basic protein, and they observed compact myelin tissue wrapping around neurons in the spinal cord. These studies demonstrated that the oligodendrocytes derived from human embryonic stem cells can function in a living system. Results of this study are published online in the peer-reviewed journal Glia. “These results are extremely exciting and show great promise,” Keirstead said. “What we plan to do next is see how these cells improve sensory and motor function, and hopefully it will lead to further tests with people who suffer from these debilitating illnesses and injuries.”

Gabriel I. Nistor and Minodora O. Totoiu from UCI collaborated with Nadia Haque and Melissa K. Carpenter of the Geron Corporation on the study, which was supported by Geron, UC Discovery, Research for Cure and the Reeve-Irvine Research Center. Geron provided the human embryonic stem cells used in this study. In previous studies, Keirstead and colleagues have identified how the body’s immune system attacks and destroys myelin tissue during spinal cord injury or disease states. They’ve also shown that, when treated with antibodies to block immune system response, myelin is capable of regenerating, which ultimately restores sensory and motor activity.

The Reeve-Irvine Research Center was established to study how injuries and diseases traumatize the spinal cord and result in paralysis or other loss of neurologic function, with the goal of finding cures. It also facilitates the coordination and cooperation of scientists around the world seeking cures for paraplegia, quadriplegia and other diseases impacting neurological function. Named in honor of Christopher Reeve, the center is part of the UCI College of Medicine.

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>