Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCI researchers use human embryonic stem cells to aid spinal cord injury repair

22.11.2004


Discovery shows stem cell-derived ‘insulation’ cells growing and functioning in a living system



For the first time, researchers have used human embryonic stem cells to create new insulating tissue for nerve fibers in a live animal model – a finding that has potentially important implications for treatment of spinal cord injury and multiple sclerosis.

Researchers at the UC Irvine Reeve-Irvine Research Center used human embryonic stem cells to create cells called oligodendrocytes, which are the building blocks of the myelin tissue that wraps around and insulates nerve fibers. This tissue is critical for maintenance of proper nerve signaling in the central nervous system, and, when it is stripped away through injury or disease, sensory and motor deficiencies and, in some cases, paralysis result.


In this study, neurologist Hans Keirstead and colleagues at UCI and the Geron Corporation devised a novel technique that allows human embryonic stem cells to differentiate into high-purity, early-stage oligodendrocyte cells. The researchers then injected these cells into the spinal cords of mice genetically engineered to have no myelin tissue.

After transplantation into mice, the early-stage cells formed into full-grown oligodendrocyte cells and migrated to appropriate neuronal sites within the spinal cord. More importantly, the researchers discovered the oligodendrocyte cells forming patches of myelin’s basic protein, and they observed compact myelin tissue wrapping around neurons in the spinal cord. These studies demonstrated that the oligodendrocytes derived from human embryonic stem cells can function in a living system. Results of this study are published online in the peer-reviewed journal Glia. “These results are extremely exciting and show great promise,” Keirstead said. “What we plan to do next is see how these cells improve sensory and motor function, and hopefully it will lead to further tests with people who suffer from these debilitating illnesses and injuries.”

Gabriel I. Nistor and Minodora O. Totoiu from UCI collaborated with Nadia Haque and Melissa K. Carpenter of the Geron Corporation on the study, which was supported by Geron, UC Discovery, Research for Cure and the Reeve-Irvine Research Center. Geron provided the human embryonic stem cells used in this study. In previous studies, Keirstead and colleagues have identified how the body’s immune system attacks and destroys myelin tissue during spinal cord injury or disease states. They’ve also shown that, when treated with antibodies to block immune system response, myelin is capable of regenerating, which ultimately restores sensory and motor activity.

The Reeve-Irvine Research Center was established to study how injuries and diseases traumatize the spinal cord and result in paralysis or other loss of neurologic function, with the goal of finding cures. It also facilitates the coordination and cooperation of scientists around the world seeking cures for paraplegia, quadriplegia and other diseases impacting neurological function. Named in honor of Christopher Reeve, the center is part of the UCI College of Medicine.

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>