Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New protein structure may aid in design of therapeutics for autoimmune disease

22.11.2004


Scientists have determined the crystal structure of a protein kinase C (PKC) isozyme, in this case the novel PKC family member PKC theta (PKCÈ). This structure should prove extremely useful in the rational design of small molecule inhibitors of PKCÈ, which has been implicated in T-cell mediated disease processes including inflammation and autoimmunity.



The research appears as the "Paper of the Week" in the November 26 issue of the Journal of Biological Chemistry, an American Society for Biochemistry and Molecular Biology journal.

PKCÈ is a key signaling molecule in a class of immune cells called T lymphocytes, or T cells. These cells recognize short amino acid chains, or antigens, that are displayed on the surface of antigen-presenting cells and initiate immune responses when activated by the antigens. "PKCÈ is selectively recruited to the contact region between T cells and antigen-presenting cells where it interacts with several signaling molecules to induce activation signals essential for productive T cell activation," explains Dr. Will Somers, of Wyeth Research. "Inhibiting PKCÈ signal transduction results in defects in T cell activation and cytokine production."


Dr. Somers and his colleagues at Wyeth determined the three-dimensional structure of the catalytic domain of PKCÈ using x-ray crystallography. "This is the first structure of a PKC at atomic resolution," notes Dr. Somers. "Moreover, the structure reported here was solved in the presence of the high potency protein kinase inhibitor, staurosporine, revealing the structural basis of inhibitor binding."

Dr. Somers believes his results have the potential to aid in identifying selective inhibitors of kinase function that can act as therapeutics for diseases in which T cells are targeting native rather than foreign antigens. Inhibiting PKC in these cases would disable the T cells and halt the autoimmune reaction. Currently, several PKC inhibitors are being used in clinical trials for various types of cancer and diabetes-related retinopathy. "This structure provides a starting point for the rational drug design of high potency inhibitors of the catalytic activity of PKCÈ for use as potential therapeutics," says Dr. Somers. "Modulation of PKCÈ kinase activity presents an ideal therapeutic target in T cell mediated disease processes, including T cell leukemias and T cell mediated autoimmune and respiratory diseases such as asthma."

Nicole Kresge | EurekAlert!
Further information:
http://www.asbmb.org

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>