Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New protein structure may aid in design of therapeutics for autoimmune disease

22.11.2004


Scientists have determined the crystal structure of a protein kinase C (PKC) isozyme, in this case the novel PKC family member PKC theta (PKCÈ). This structure should prove extremely useful in the rational design of small molecule inhibitors of PKCÈ, which has been implicated in T-cell mediated disease processes including inflammation and autoimmunity.



The research appears as the "Paper of the Week" in the November 26 issue of the Journal of Biological Chemistry, an American Society for Biochemistry and Molecular Biology journal.

PKCÈ is a key signaling molecule in a class of immune cells called T lymphocytes, or T cells. These cells recognize short amino acid chains, or antigens, that are displayed on the surface of antigen-presenting cells and initiate immune responses when activated by the antigens. "PKCÈ is selectively recruited to the contact region between T cells and antigen-presenting cells where it interacts with several signaling molecules to induce activation signals essential for productive T cell activation," explains Dr. Will Somers, of Wyeth Research. "Inhibiting PKCÈ signal transduction results in defects in T cell activation and cytokine production."


Dr. Somers and his colleagues at Wyeth determined the three-dimensional structure of the catalytic domain of PKCÈ using x-ray crystallography. "This is the first structure of a PKC at atomic resolution," notes Dr. Somers. "Moreover, the structure reported here was solved in the presence of the high potency protein kinase inhibitor, staurosporine, revealing the structural basis of inhibitor binding."

Dr. Somers believes his results have the potential to aid in identifying selective inhibitors of kinase function that can act as therapeutics for diseases in which T cells are targeting native rather than foreign antigens. Inhibiting PKC in these cases would disable the T cells and halt the autoimmune reaction. Currently, several PKC inhibitors are being used in clinical trials for various types of cancer and diabetes-related retinopathy. "This structure provides a starting point for the rational drug design of high potency inhibitors of the catalytic activity of PKCÈ for use as potential therapeutics," says Dr. Somers. "Modulation of PKCÈ kinase activity presents an ideal therapeutic target in T cell mediated disease processes, including T cell leukemias and T cell mediated autoimmune and respiratory diseases such as asthma."

Nicole Kresge | EurekAlert!
Further information:
http://www.asbmb.org

More articles from Life Sciences:

nachricht Synthetic nanoparticles achieve the complexity of protein molecules
24.01.2017 | Carnegie Mellon University

nachricht Immune Defense Without Collateral Damage
24.01.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>