Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New protein ’stop sign’ alters blood vessel growth

19.11.2004


In experiments with mice, a research team led by Johns Hopkins scientists has discovered an unusual protein pair that stops blood vessels’ growth in the developing back. Results of the studies, published today in the express online edition of Science, are of special interest to researchers trying to prevent blood flow that nourishes tumors or exploit the signals vessels emit during growth to help regrow damaged nerves.



During an animal’s prenatal development, protein "signs" tell growing blood vessels which way to go and when to stop or turn back. Scientists already knew that one big family of "stop" proteins works by binding to two proteins, called receptors, on the leading edge of a budding blood vessel. In new experiments, the Hopkins-led team reports on one member of this family of proteins that works differently from the others.

"Unlike all of the others in this group, called semaphorins, this protein only needs one protein receptor partner," says lead author Chenghua Gu, D.V.M., Ph.D., a postdoctoral fellow in neuroscience in Hopkins’ Institute for Basic Biomedical Sciences. "It’s a totally new observation of blood vessel growth in development, and it has made us rethink how the semaphorins control this process."


Semaphorins float freely in tissues adjacent to blood vessels and nerves and stop them from migrating into inappropriate areas. Although the protein the team studied, known as Sema3E, belongs to this family, its binding partners and exact job were unclear until now.

Gu and others from the laboratories of Hopkins neuroscience professors Alex Kolodkin, Ph.D., and David Ginty, Ph.D., engineered a version of Sema3E that colors its binding partner blue. They found that the resulting blue pattern on the developing mice looked suspiciously like the pattern of plexin-D1, a previously described protein found in blood vessels and nerves.

To prove that this was indeed Sema3E’s binding partner, the researchers inserted the plexin-D1 protein into cultured monkey cells that don’t naturally contain it. They discovered that the Sema3E protein bound tightly to the monkey cells and created a signal. Surprisingly, the two proteins didn’t need a third that is known to work with semaphorins in other situations.

To see how each of these three proteins affects blood vessel migration, Gu and colleagues from Hopkins, Yutaka Yoshida, Ph.D., and other collaborators from Columbia University and the Developmental Biology Institute of Marseille in France engineered mice to lack each of the three proteins. In mice without Sema3E or plexin-D1, blood vessels along a particular part of the back were disorganized. In contrast, mice lacking the third protein (called neuropilin) grew the vessels normally.

"We know that these two proteins are crucial for the growth of blood vessels in the back, but now we’re investigating whether the pair controls blood vessels and nerves in other parts of the developing mouse, too," says Ginty, also a Howard Hughes Medical Institute investigator.

Sema3E was originally isolated from an invasive tumor cell line, so it’s thought to be associated with progression of cancer. Both plexin-D1 and Sema3E are found in many species, including humans, and when disrupted could contribute to vascular birth defects, coronary heart disease, and adult nerve regeneration problems, say the researchers.

This research was supported by grants from the National Institutes of Health (NIH), Howard Hughes Medical Institute (HHMI), the Christopher Reeve Paralysis Foundation, the Packard Center for ALS Research at Johns Hopkins, the Institut National de la Santé et de la Recherche Médical (INSERM), Centre National de la Recherche Scientifique (CNRS), Association Française contre les Myopathies (AFM) and a European Commission contract.

Authors on the paper are Gu, Ginty, Kolodkin, Dorothy Reimert and Janna Merte from Hopkins; Yoshida and Thomas Jessell from HHMI at Columbia University, New York; and Jean Livet, Fanny Mann and Christopher Henderson from the Developmental Biology Institute of Marseille (IBDM), France.

Joanna Downer | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>