Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Livermore scientists shape crystals with biomolecules

19.11.2004


Using biominerals as an inspiration, Livermore physicist Jim De Yoreo and his LLNL research team have determined a key factor in how to manipulate the shapes of crystals.



In a series of experiments using an atomic force microscope, De Yoreo’s team and that of Patricia Dove, a geoscientist from Virginia Polytechnic Institute and State University, used four different biomolecules to study their effects on the dynamics of atomic steps during crystallization. They set out to test a two-decade-old model of crystal-shape modification believed to be at odds with classic theories of crystal growth. Their results appear in the Nov. 19 issue of the journal, Science.

The main focus of the work was on the mineral calcite, which has more than 300 identified crystal forms that can combine to produce at least a thousand different crystal variations. Crystals can form a thousand different shapes by combining the basic forms of the positive rhombohedron (a prism with six faces, each a rhombus), negative rhombohedron, steeply, moderately and slightly inclined rhombohedrons, various scalahedrons, prism and pinacoid. De Yoreo and Dove first determined that when combined with magnesium, the corners formed by the intersection of atomic steps flatten and roughen, leading to flattening of the crystal’s corners and elongation and roughening of the crystal shape.


When combined with acidic amino acids, both the step and crystal shapes changed to reflect the handedness (whether the molecule was right-handed or left-handed) of the amino acids. Molecular simulations showed that the step edges provided the most favorable binding environment for the acids.

When citrate, a naturally occurring inhibitor and therapeutic agent, was used in the experiment, the change in crystal shape again mimicked the change in step shape, and molecular models also identified the steps as the preferred interaction sites.

In the last experiment, calcite crystals were combined with a protein extracted from abalone nacre, a pearly substance that lines the interior of many shells, and is most perfect in the mother-of-pearl. The changes were step-specific and directly determined the shape of the macroscopic crystals.

"Although crystal growth modifications are diverse, the source of shape changes in these studies is clear," De Yoreo said. "Crystal shape is controlled by step-specific interactions between growth modifiers and individual step edges on pre-existing crystal faces. Through this research, our team has shown that the classic theories of growth merge smoothly with the models proposed to explain shape modification."

Anne M. Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Safe glide at total engine failure with ELA-inside

27.02.2017 | Information Technology

Fraunhofer IFAM expands its R&D work on Coatings for protection against corrosion and marine growth

27.02.2017 | Materials Sciences

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>