Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Livermore scientists shape crystals with biomolecules

19.11.2004


Using biominerals as an inspiration, Livermore physicist Jim De Yoreo and his LLNL research team have determined a key factor in how to manipulate the shapes of crystals.



In a series of experiments using an atomic force microscope, De Yoreo’s team and that of Patricia Dove, a geoscientist from Virginia Polytechnic Institute and State University, used four different biomolecules to study their effects on the dynamics of atomic steps during crystallization. They set out to test a two-decade-old model of crystal-shape modification believed to be at odds with classic theories of crystal growth. Their results appear in the Nov. 19 issue of the journal, Science.

The main focus of the work was on the mineral calcite, which has more than 300 identified crystal forms that can combine to produce at least a thousand different crystal variations. Crystals can form a thousand different shapes by combining the basic forms of the positive rhombohedron (a prism with six faces, each a rhombus), negative rhombohedron, steeply, moderately and slightly inclined rhombohedrons, various scalahedrons, prism and pinacoid. De Yoreo and Dove first determined that when combined with magnesium, the corners formed by the intersection of atomic steps flatten and roughen, leading to flattening of the crystal’s corners and elongation and roughening of the crystal shape.


When combined with acidic amino acids, both the step and crystal shapes changed to reflect the handedness (whether the molecule was right-handed or left-handed) of the amino acids. Molecular simulations showed that the step edges provided the most favorable binding environment for the acids.

When citrate, a naturally occurring inhibitor and therapeutic agent, was used in the experiment, the change in crystal shape again mimicked the change in step shape, and molecular models also identified the steps as the preferred interaction sites.

In the last experiment, calcite crystals were combined with a protein extracted from abalone nacre, a pearly substance that lines the interior of many shells, and is most perfect in the mother-of-pearl. The changes were step-specific and directly determined the shape of the macroscopic crystals.

"Although crystal growth modifications are diverse, the source of shape changes in these studies is clear," De Yoreo said. "Crystal shape is controlled by step-specific interactions between growth modifiers and individual step edges on pre-existing crystal faces. Through this research, our team has shown that the classic theories of growth merge smoothly with the models proposed to explain shape modification."

Anne M. Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>