Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the sea urchin grows new spines

19.11.2004


The sea urchin’s tough, brittle spines are an engineering wonder. Composed of a single crystal from base to needle-sharp tip, they grow back within a few days after being broken off. Now, a team of scientists at the Weizmann Institute of Science has shown how they do it.



While many crystals grow from component atoms or molecules that are dissolved in liquid, sugar and salt being the most familiar examples, the team of Profs. Lia Addadi and Steve Weiner, of the Institute’s Structural Biology Department, found that the sea urchin uses another strategy. The material of the spines is first amassed in a non-crystalline form, termed "amorphous calcium carbonate" (ACC). Packets of ACC are shoveled out of the cells surrounding the base of the broken spine and up to the growing end. Within hours of arriving in place, the amorphous material, which is composed of densely packed, but disorganized molecules, turns to calcite crystal in which the molecules line up evenly in lattice formations.

Working with graduate student Yael Politi and Eugenia Klein and Talmon Arad of the Chemical Research Support Unit, Professors Addadi and Weiner used four different methods of investigation, including two kinds of electron microscopy, to look for the ACC as it was being deposited and turning to crystal. "The question," says Weiner "is why it should be so difficult to observe a process that seems to be so basic. Scientists have been studying it for over a hundred years. In fact, because the ACC is a transient phase, we had to develop new methods to catch it while it exists."


The captured images show microscopic needles that grow first straight out from the stump of the old spine, and then branch out to form a lacy structure that is hard but light. The crystalline structure of the old spine provides the template for the alignment of the molecules in the crystal, and thus controls the intricate, yet precise, growth pattern.

Though previous studies by the Weizmann group have shown the same strategy is used by immature sea urchins and mollusks in the larval stage to build internal skeletons, this is the first time that the process was observed in adult marine animals. It is far from obvious that larva and adult would use the same methods – their lifestyles are very different. For instance, the tiny sea urchin larva is transparent and swims around, while the round, spiky adult lives on the sea floor. This can translate into differences in biological processes, as well.

Because it works for both, Addadi and Weiner believe this method is probably a basic strategy used not only by close relatives of the sea urchin such as sea stars, but by a wide variety of spiny and shelled sea creatures like mollusks and corals. In addition, the idea of growing single crystals by first creating the material in an amorphous phase might prove useful to material scientists and engineers who want to produce and shape sophisticated synthetic materials that have the properties of single crystals.

Prof. Addadi’s research is supported by the J & R Center for Scientific Research, the Ilse Katz Institute for Material Sciences and Magnetic Resonance Research, the Helen and Milton A. Kimmelman Center for Biomolecular Structure and Assembly, the Philip M. Kltuznick Fund for Research, the Minerva Stiftung Gesellschaft fuer die Forschung m.b.H., the Women’s Health Research Center and the Ziegler Family Trust, Encino, CA. She holds the Dorothy and Patrick Gorman Professional Chair.

Jeffrey J. Sussman | EurekAlert!
Further information:
http://www.weizmann.ac.il

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>