Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the sea urchin grows new spines

19.11.2004


The sea urchin’s tough, brittle spines are an engineering wonder. Composed of a single crystal from base to needle-sharp tip, they grow back within a few days after being broken off. Now, a team of scientists at the Weizmann Institute of Science has shown how they do it.



While many crystals grow from component atoms or molecules that are dissolved in liquid, sugar and salt being the most familiar examples, the team of Profs. Lia Addadi and Steve Weiner, of the Institute’s Structural Biology Department, found that the sea urchin uses another strategy. The material of the spines is first amassed in a non-crystalline form, termed "amorphous calcium carbonate" (ACC). Packets of ACC are shoveled out of the cells surrounding the base of the broken spine and up to the growing end. Within hours of arriving in place, the amorphous material, which is composed of densely packed, but disorganized molecules, turns to calcite crystal in which the molecules line up evenly in lattice formations.

Working with graduate student Yael Politi and Eugenia Klein and Talmon Arad of the Chemical Research Support Unit, Professors Addadi and Weiner used four different methods of investigation, including two kinds of electron microscopy, to look for the ACC as it was being deposited and turning to crystal. "The question," says Weiner "is why it should be so difficult to observe a process that seems to be so basic. Scientists have been studying it for over a hundred years. In fact, because the ACC is a transient phase, we had to develop new methods to catch it while it exists."


The captured images show microscopic needles that grow first straight out from the stump of the old spine, and then branch out to form a lacy structure that is hard but light. The crystalline structure of the old spine provides the template for the alignment of the molecules in the crystal, and thus controls the intricate, yet precise, growth pattern.

Though previous studies by the Weizmann group have shown the same strategy is used by immature sea urchins and mollusks in the larval stage to build internal skeletons, this is the first time that the process was observed in adult marine animals. It is far from obvious that larva and adult would use the same methods – their lifestyles are very different. For instance, the tiny sea urchin larva is transparent and swims around, while the round, spiky adult lives on the sea floor. This can translate into differences in biological processes, as well.

Because it works for both, Addadi and Weiner believe this method is probably a basic strategy used not only by close relatives of the sea urchin such as sea stars, but by a wide variety of spiny and shelled sea creatures like mollusks and corals. In addition, the idea of growing single crystals by first creating the material in an amorphous phase might prove useful to material scientists and engineers who want to produce and shape sophisticated synthetic materials that have the properties of single crystals.

Prof. Addadi’s research is supported by the J & R Center for Scientific Research, the Ilse Katz Institute for Material Sciences and Magnetic Resonance Research, the Helen and Milton A. Kimmelman Center for Biomolecular Structure and Assembly, the Philip M. Kltuznick Fund for Research, the Minerva Stiftung Gesellschaft fuer die Forschung m.b.H., the Women’s Health Research Center and the Ziegler Family Trust, Encino, CA. She holds the Dorothy and Patrick Gorman Professional Chair.

Jeffrey J. Sussman | EurekAlert!
Further information:
http://www.weizmann.ac.il

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>