Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the sea urchin grows new spines

19.11.2004


The sea urchin’s tough, brittle spines are an engineering wonder. Composed of a single crystal from base to needle-sharp tip, they grow back within a few days after being broken off. Now, a team of scientists at the Weizmann Institute of Science has shown how they do it.



While many crystals grow from component atoms or molecules that are dissolved in liquid, sugar and salt being the most familiar examples, the team of Profs. Lia Addadi and Steve Weiner, of the Institute’s Structural Biology Department, found that the sea urchin uses another strategy. The material of the spines is first amassed in a non-crystalline form, termed "amorphous calcium carbonate" (ACC). Packets of ACC are shoveled out of the cells surrounding the base of the broken spine and up to the growing end. Within hours of arriving in place, the amorphous material, which is composed of densely packed, but disorganized molecules, turns to calcite crystal in which the molecules line up evenly in lattice formations.

Working with graduate student Yael Politi and Eugenia Klein and Talmon Arad of the Chemical Research Support Unit, Professors Addadi and Weiner used four different methods of investigation, including two kinds of electron microscopy, to look for the ACC as it was being deposited and turning to crystal. "The question," says Weiner "is why it should be so difficult to observe a process that seems to be so basic. Scientists have been studying it for over a hundred years. In fact, because the ACC is a transient phase, we had to develop new methods to catch it while it exists."


The captured images show microscopic needles that grow first straight out from the stump of the old spine, and then branch out to form a lacy structure that is hard but light. The crystalline structure of the old spine provides the template for the alignment of the molecules in the crystal, and thus controls the intricate, yet precise, growth pattern.

Though previous studies by the Weizmann group have shown the same strategy is used by immature sea urchins and mollusks in the larval stage to build internal skeletons, this is the first time that the process was observed in adult marine animals. It is far from obvious that larva and adult would use the same methods – their lifestyles are very different. For instance, the tiny sea urchin larva is transparent and swims around, while the round, spiky adult lives on the sea floor. This can translate into differences in biological processes, as well.

Because it works for both, Addadi and Weiner believe this method is probably a basic strategy used not only by close relatives of the sea urchin such as sea stars, but by a wide variety of spiny and shelled sea creatures like mollusks and corals. In addition, the idea of growing single crystals by first creating the material in an amorphous phase might prove useful to material scientists and engineers who want to produce and shape sophisticated synthetic materials that have the properties of single crystals.

Prof. Addadi’s research is supported by the J & R Center for Scientific Research, the Ilse Katz Institute for Material Sciences and Magnetic Resonance Research, the Helen and Milton A. Kimmelman Center for Biomolecular Structure and Assembly, the Philip M. Kltuznick Fund for Research, the Minerva Stiftung Gesellschaft fuer die Forschung m.b.H., the Women’s Health Research Center and the Ziegler Family Trust, Encino, CA. She holds the Dorothy and Patrick Gorman Professional Chair.

Jeffrey J. Sussman | EurekAlert!
Further information:
http://www.weizmann.ac.il

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>