Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the sea urchin grows new spines

19.11.2004


The sea urchin’s tough, brittle spines are an engineering wonder. Composed of a single crystal from base to needle-sharp tip, they grow back within a few days after being broken off. Now, a team of scientists at the Weizmann Institute of Science has shown how they do it.



While many crystals grow from component atoms or molecules that are dissolved in liquid, sugar and salt being the most familiar examples, the team of Profs. Lia Addadi and Steve Weiner, of the Institute’s Structural Biology Department, found that the sea urchin uses another strategy. The material of the spines is first amassed in a non-crystalline form, termed "amorphous calcium carbonate" (ACC). Packets of ACC are shoveled out of the cells surrounding the base of the broken spine and up to the growing end. Within hours of arriving in place, the amorphous material, which is composed of densely packed, but disorganized molecules, turns to calcite crystal in which the molecules line up evenly in lattice formations.

Working with graduate student Yael Politi and Eugenia Klein and Talmon Arad of the Chemical Research Support Unit, Professors Addadi and Weiner used four different methods of investigation, including two kinds of electron microscopy, to look for the ACC as it was being deposited and turning to crystal. "The question," says Weiner "is why it should be so difficult to observe a process that seems to be so basic. Scientists have been studying it for over a hundred years. In fact, because the ACC is a transient phase, we had to develop new methods to catch it while it exists."


The captured images show microscopic needles that grow first straight out from the stump of the old spine, and then branch out to form a lacy structure that is hard but light. The crystalline structure of the old spine provides the template for the alignment of the molecules in the crystal, and thus controls the intricate, yet precise, growth pattern.

Though previous studies by the Weizmann group have shown the same strategy is used by immature sea urchins and mollusks in the larval stage to build internal skeletons, this is the first time that the process was observed in adult marine animals. It is far from obvious that larva and adult would use the same methods – their lifestyles are very different. For instance, the tiny sea urchin larva is transparent and swims around, while the round, spiky adult lives on the sea floor. This can translate into differences in biological processes, as well.

Because it works for both, Addadi and Weiner believe this method is probably a basic strategy used not only by close relatives of the sea urchin such as sea stars, but by a wide variety of spiny and shelled sea creatures like mollusks and corals. In addition, the idea of growing single crystals by first creating the material in an amorphous phase might prove useful to material scientists and engineers who want to produce and shape sophisticated synthetic materials that have the properties of single crystals.

Prof. Addadi’s research is supported by the J & R Center for Scientific Research, the Ilse Katz Institute for Material Sciences and Magnetic Resonance Research, the Helen and Milton A. Kimmelman Center for Biomolecular Structure and Assembly, the Philip M. Kltuznick Fund for Research, the Minerva Stiftung Gesellschaft fuer die Forschung m.b.H., the Women’s Health Research Center and the Ziegler Family Trust, Encino, CA. She holds the Dorothy and Patrick Gorman Professional Chair.

Jeffrey J. Sussman | EurekAlert!
Further information:
http://www.weizmann.ac.il

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>