Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene expression profiling aids in ovarian cancer prognosis

19.11.2004


The identification of a gene expression profile using microarray technology may help clinicians better determine the prognosis of patients with advanced stage ovarian cancer and may eventually help provide targeted therapies for this hard-to-treat disease, according to a study led by investigators at Beth Israel Deaconess Medical Center (BIDMC).



The findings, described in an advance on-line publication of the December issue of the Journal of Clinical Oncology, represent the first time that this type of genetic test has proven useful as a prognostic tool for ovarian cancer, which accounts for approximately 26,000 new cases and 16,000 deaths in the United States each year. "Ovarian cancer is widely recognized as being extremely difficult to treat," explains Stephen A. Cannistra, M.D., Director of Gynecologic Medical Oncology at BIDMC and Associate Professor of Medicine at Harvard Medical School. "Because symptoms often do not appear until the disease has already spread to the upper abdomen, this malignancy is usually not diagnosed until it has reached an advanced stage." At that point, he adds, doctors typically use clinical data – such as the amount of residual disease remaining following surgery – to assess a patient’s prognosis and determine their course of therapy, a method that Cannistra notes is admittedly imperfect.

Knowing that the behavior of cancers is partly dependent upon which genes are turned on and off in tumor cells, researchers have long suspected that a better understanding of the genetic profile of the tumors of individual patients could help in making a more accurate prognosis. "With the advent of microarray analysis -- in which genes expressed by the cancer cells are labeled with a probe and then applied to a glass slide that contains embedded sequences of thousands of known human genes – this type of genetic information has become much more accessible," explains Cannistra. "[Through this process] genes that are present in the tumor cell bind to their counterpart sequences on the glass slide, thereby permitting their identification with the aid of computer analysis."


Using tumor tissue from 68 ovarian cancer patients undergoing initial surgery at either BIDMC in Boston or Memorial Sloan-Kettering Cancer Center in New York, Cannistra and his co-authors employed microarray analysis to develop a "genetic snapshot" of ovarian cancer. "We were ultimately able to identify 115 genes, which we refer to collectively as the Ovarian Cancer Prognostic Profile [OCPP]," Cannistra notes. "Simply knowing the expression pattern of these genes from the original tumor sample [i.e., whether genes were ’turned on’ or ’turned off’] provided us with important information about prognosis that could not be gleaned from standard clinical features, such as tumor grade or residual disease status."

"Molecular profiling of epithelial ovarian cancer holds promise that goes beyond identifying the most aggressive tumors," according to an editorial published in the on-line version of the Journal of Clinical Oncology. "Gene expression signatures may also be a cornerstone to understanding the root causes of ovarian cancer, and to designing pathway-specific targeted therapies," the commentary concludes. According to Cannistra, future research will further evaluate this technology through prospective studies of patients with both advanced ovarian cancer, as well as early stage disease.

"The use of a powerful prognostic tool such as the OCPP may someday enable clinicians to identify those patients most appropriate for clinical trials [of investigative therapies]," writes Cannistra. "It may also provide insights into why tumors frequently develop resistance to chemotherapy, and may eventually permit individualized use of targeted therapies that are chosen on the basis of a given tumor’s genetic profile," he notes.

Bonnie Prescott | EurekAlert!
Further information:
http://www.bidmc.harvard.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>