Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ubiquitination in real-time: A world first at the Université de Montréal

19.11.2004


Biochemistry department featured in December issue of the prestigious Nature Methods scientific publication



The biochemistry department of the Université de Montréal salutes the brilliant research performed by Julie Perroy, post-doctoral trainee, and Stéphanie Pontier, graduate student, on the protein ubiquitination process. Their article describing this research work appears in the year-end review of the Nature Methods scientific publication. The work was performed under the direction of Michel Bouvier, Professor and Director of the Biochemistry Department of the Université de Montréal and holder of the Canada Research Chair in Signal Transduction and Molecular Pharmacology. Doctor Muriel Aubry, Professor, Biochemistry Department, also collaborated in the project.

As explained in their article, which was also featured in a News and Views article sponsored by the journal, Perroy and Pontier succeeded in demonstrating that the ubiquitination process of a given protein can be monitored dynamically, in real time, on living cells.


The study was made possible through the use of the BRET technique, developed previously in Professor Bouvier’s laboratory. Thanks to these results, the different roles played by ubiquitin, a small protein that is attracting great interest, will become better known.

Nobel Prize for Chemistry in 2004

The work of Professor Bouvier and his team is part of the leading edge of an international research movement, which includes the 2004 winners of the Nobel Prize in Chemistry, Aaron Ciechanover, Avram Hershko and Irwin Rose, for their work on the role of ubiquitin in protein degradation. The three researchers will receive their prize on December 8 at Stockholm University, only a few days after the publication date of Nature Methods.

The research work of Professor Bouvier and his collaborators has had a major impact, which is likely to increase rapidly. "In the coming weeks, I expect we will have many requests for the biological material needed to implement this technique," noted Professor Bouvier. " As with our past projects, we will definitely welcome researchers from around the world, coming to our laboratory to learn on-site how to use the BRET technique. This will stimulate interesting intellectual exchanges, and attract students to join our research laboratory."

The close timing between the appearance of the article and the Nobel Prize announcements will also generate interest in the results of this study, he added. "This will help specialists and general public alike to understand the importance of ubiquitin, and particularly its health implications."

Medical and pharmaceutical applications

In recent years Professor Bouvier and his research team have been concerned with hormonal receptors for G proteins, whose regulation seem closely tied to the ubiquitination process. These receptors have great pharmaceutical importance, as they are acted upon by more than half of the prescription medications currently being prescribed, for diseases as varied as high blood pressure, ulcers, migraine, etc.

Professor Bouvier worked with several valued partners in the Groupe de Recherche Universitaire sur le Médicament (GRUM), including: the Chemistry department, several departments of the Faculty of Medicine, the Pharmacy Faculty of the Université de Montréal, Sainte-Justine Hospital and CHUM. One of the missions of GRUM is to establish a high content screening facility that would allow the identification of the chemical components with therapeutic potential. The recent results on observation and monitoring of ubiquitination in real time, in living cells, will help to better target therapeutic molecules from which new medications might be produced.

Sophie Langlois | EurekAlert!
Further information:
http://www.umontreal.ca

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>