Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ubiquitination in real-time: A world first at the Université de Montréal

19.11.2004


Biochemistry department featured in December issue of the prestigious Nature Methods scientific publication



The biochemistry department of the Université de Montréal salutes the brilliant research performed by Julie Perroy, post-doctoral trainee, and Stéphanie Pontier, graduate student, on the protein ubiquitination process. Their article describing this research work appears in the year-end review of the Nature Methods scientific publication. The work was performed under the direction of Michel Bouvier, Professor and Director of the Biochemistry Department of the Université de Montréal and holder of the Canada Research Chair in Signal Transduction and Molecular Pharmacology. Doctor Muriel Aubry, Professor, Biochemistry Department, also collaborated in the project.

As explained in their article, which was also featured in a News and Views article sponsored by the journal, Perroy and Pontier succeeded in demonstrating that the ubiquitination process of a given protein can be monitored dynamically, in real time, on living cells.


The study was made possible through the use of the BRET technique, developed previously in Professor Bouvier’s laboratory. Thanks to these results, the different roles played by ubiquitin, a small protein that is attracting great interest, will become better known.

Nobel Prize for Chemistry in 2004

The work of Professor Bouvier and his team is part of the leading edge of an international research movement, which includes the 2004 winners of the Nobel Prize in Chemistry, Aaron Ciechanover, Avram Hershko and Irwin Rose, for their work on the role of ubiquitin in protein degradation. The three researchers will receive their prize on December 8 at Stockholm University, only a few days after the publication date of Nature Methods.

The research work of Professor Bouvier and his collaborators has had a major impact, which is likely to increase rapidly. "In the coming weeks, I expect we will have many requests for the biological material needed to implement this technique," noted Professor Bouvier. " As with our past projects, we will definitely welcome researchers from around the world, coming to our laboratory to learn on-site how to use the BRET technique. This will stimulate interesting intellectual exchanges, and attract students to join our research laboratory."

The close timing between the appearance of the article and the Nobel Prize announcements will also generate interest in the results of this study, he added. "This will help specialists and general public alike to understand the importance of ubiquitin, and particularly its health implications."

Medical and pharmaceutical applications

In recent years Professor Bouvier and his research team have been concerned with hormonal receptors for G proteins, whose regulation seem closely tied to the ubiquitination process. These receptors have great pharmaceutical importance, as they are acted upon by more than half of the prescription medications currently being prescribed, for diseases as varied as high blood pressure, ulcers, migraine, etc.

Professor Bouvier worked with several valued partners in the Groupe de Recherche Universitaire sur le Médicament (GRUM), including: the Chemistry department, several departments of the Faculty of Medicine, the Pharmacy Faculty of the Université de Montréal, Sainte-Justine Hospital and CHUM. One of the missions of GRUM is to establish a high content screening facility that would allow the identification of the chemical components with therapeutic potential. The recent results on observation and monitoring of ubiquitination in real time, in living cells, will help to better target therapeutic molecules from which new medications might be produced.

Sophie Langlois | EurekAlert!
Further information:
http://www.umontreal.ca

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>