Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A "Repulsive" Protein Guides Blood Vessel Development

19.11.2004


In a developing embryo, the growth of nerves cannot outpace the establishment of life-giving blood vessels. Now, researchers have found that a protein intimately involved in blood vessel patterning actually belongs to a family of proteins known to guide neural development.



The researchers said the studies provide more evidence of communication between developing nerves and blood vessels. Understanding how those networks talk to each other could help researchers devise methods to prevent blood vessel growth in tumors selectively - an approach to cancer treatment known as anti-angiogenesis. The research team, which included Howard Hughes Medical Institute investigators David D. Ginty and Thomas M. Jessell, published its findings November 18, 2004, in Science Express, the early online version of the journal Science. Co-first authors of the paper were Chenghua Gu in Ginty’s laboratory at The Johns Hopkins University School of Medicine, and Yutaka Yoshida in Jessell’s laboratory at Columbia University.

In their experiments, the researchers explored the roles of two proteins involved in vascular development. One of the molecules, Semaphorin 3E (Sema3E), is a member of a family of protein signals that guides the growth of nerve cells. The other protein, plexin-D1, is a receptor protein that nestles in the membranes of growing cells and responds to external signaling proteins. Ginty said that before the current study, plexin-D1 was known to be important for vascular development, but the specific signal to which it responded was a mystery. The molecule was also considered an important receptor in nerve cell development, and for that reason Jessell’s laboratory was actively investigating plexin-D1.


Studies by Ginty and others, including former HHMI investigator Marc Tessier-Lavigne, who is now at Genentech, had shown that some of the semaphorins bind to a receptor called neuropilin, which is critical for vascular patterning in the embryo. However, in their earlier work, Gu, Ginty, and co-author Alex Kolodkin showed that semaphorins do not need to bind to neuropilin for normal patterning to occur. “That work set us looking for other potential mechanisms by which semaphorins might control vascular pattern development,” said Ginty. The researchers found Sema3E in regions of the developing embryo that suggested that it should have a role in the patterning of blood vessels. They also found a strikingly similar pattern of expression of the blood vessel cell receptor plexin-D1, leading the researchers to hypothesize that Sema3E might be the signaling molecule that interacts with plexin-D1. If this were true, it suggested that Sema3E exerts a “repulsive” force, channeling the blood vessels to grow along their proper course. Meanwhile, Yoshida discovered that unlike other members of the same protein family, Sema3E binds selectively to plexin-D1 - a strong hint that the two signals work together to control vascular patterning. Yoshida also found that Sema3E can bind to plexin-D1 whether or not it binds to neuropilin.

Researchers noted that in contrast to the careful patterning of blood vessels in normal mice, the pattern of blood vessels in mice lacking plexin-D1, produced in Jessell’s laboratory, was haphazard. Furthermore, knockout mice lacking Sema3E, produced in the laboratory of co-author Christopher Henderson of the Developmental Biology Institute in France, showed the same defective patterning. In additional experiments, Gu showed that overexpression of Sema3E protein in specific regions of chick embryos prevented vascular growth into those areas. “Sema3E is a very potent chemorepellent for developing blood vessels,” Ginty noted. “So, one possibility is that drugs that mimic this function could be useful in preventing growth of the new blood vessels required by tumors.” “One of the really interesting things about this paper is that it questions the idea that Sema3E’s binding to neuropilin is required for vascular patterning,” said Jessell. “This, together with the finding that Sema3E interacts with plexin-D1, independent of neuropilin, may turn some of the preconceptions about the role of neuropilins in vascular patterning on their head.”

Jessell and his colleagues are now exploring whether Sema3E and plexin-D1 also contribute to the development of connections in the spinal cord. Ginty and his colleagues plan to explore the role of the proteins in neural development, as well as whether the combination is involved in vascular patterning in the limbs.

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>