Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover New Way to Boost Grain Crops’ Drought Tolerance

18.11.2004


UC Riverside Team Finds That Lowering Enzyme Increases Drought Tolerance in Corn



Researchers at the University of California, Riverside report the development of technology that increases the tolerance of grains crops to drought by decreasing the amount of an enzyme that is responsible for producing the plant hormone ethylene.

UCR Biochemist Daniel R. Gallie led the research, funded by the U.S. Department of Agriculture, the National Science Foundation and the California Agricultural Experiment Station. The findings will be published in the December issue of The Plant Journal in a paper titled ACC Synthase Expression Regulates Leaf Performance and Drought Tolerance in Maize.


Ethylene is vital in regulation of plant responses to environmental stresses, such as flooding and drought, and to attack by pathogens. But often, ethylene initiates leaf death in response to adverse conditions, sacrificing less essential parts of a plant to protect the growing tip, responsible for producing flowers, the reproductive organs of plants. Gallie said that he and his research team have examined the role of ethylene during plant growth and development since 1997.

In the most recent study, conducted by UCR researchers and Pioneer Hi-Bred International, an Iowa-based developer and supplier of seed to farmers, the authors targeted ACC synthase, an enzyme required for the production of ethylene, screening thousands of plants for naturally occurring mutants that were deficient in the enzyme.

The researchers isolated several such plants, and one in particular that produced substantially lower levels of the hormone. Leaves from this mutated plant remained functional and maintained photosynthetic function longer than non-altered plants.

In addition, the plants were more resistant to the effects of adverse environmental conditions. Surprisingly, by reducing the level of ethylene, all the leaves of the altered plants contained higher levels of chlorophyll and leaf protein, and functioned better than control leaves. “Thus, they are better able to survive conditions of drought and remain productive,” said Professor Gallie, who led a research team that included UCR Colleague Todd E. Young and Robert B. Meeley, of Pioneer Hi-Bred. “Erratic rainfall and conditions of drought have plagued farmers from time immemorial, and are responsible for substantial losses in crop yield when they do occur.”

For several years, Gallie said, a number of studies on global climate have predicted an increase in global temperature, and regional conditions of drought, which may have already begun. “Increasing drought tolerance in crops is highly valuable to U.S. and world agriculture now, and will be even more critical as our environment continues to change as a consequence of global warming,” said Gallie.

The findings by Gallie and his research team suggest that ethylene controls the level of leaf function under normal growth conditions, as well as during adverse environmental conditions.

Gallie’s research with corn opens the door to producing crops better able to withstand periodic losses in rainfall, including grains, which are the most important direct source of food for livestock and for a majority of humans. “Our discovery will assist farmers who depend on rainwater for their crops during those years when rainfall is low, particularly those who grow crops in arid areas, such as exists in many developing [is he is okay with this change] countries,” said Gallie. “As global warming continues to change our own environment in the U.S., our work will be important in helping U.S. farmers continue to produce the food we need even as our climate becomes unpredictable.”

Future inquiries will most likely focus on how ethylene may regulate other aspects of plant growth and development, such as during flower development and root growth, Gallie added.

Ricardo Duran | alfa
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht Nesting aids make agricultural fields attractive for bees
20.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht The Kitchen Sponge – Breeding Ground for Germs
20.07.2017 | Hochschule Furtwangen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>