Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover New Way to Boost Grain Crops’ Drought Tolerance

18.11.2004


UC Riverside Team Finds That Lowering Enzyme Increases Drought Tolerance in Corn



Researchers at the University of California, Riverside report the development of technology that increases the tolerance of grains crops to drought by decreasing the amount of an enzyme that is responsible for producing the plant hormone ethylene.

UCR Biochemist Daniel R. Gallie led the research, funded by the U.S. Department of Agriculture, the National Science Foundation and the California Agricultural Experiment Station. The findings will be published in the December issue of The Plant Journal in a paper titled ACC Synthase Expression Regulates Leaf Performance and Drought Tolerance in Maize.


Ethylene is vital in regulation of plant responses to environmental stresses, such as flooding and drought, and to attack by pathogens. But often, ethylene initiates leaf death in response to adverse conditions, sacrificing less essential parts of a plant to protect the growing tip, responsible for producing flowers, the reproductive organs of plants. Gallie said that he and his research team have examined the role of ethylene during plant growth and development since 1997.

In the most recent study, conducted by UCR researchers and Pioneer Hi-Bred International, an Iowa-based developer and supplier of seed to farmers, the authors targeted ACC synthase, an enzyme required for the production of ethylene, screening thousands of plants for naturally occurring mutants that were deficient in the enzyme.

The researchers isolated several such plants, and one in particular that produced substantially lower levels of the hormone. Leaves from this mutated plant remained functional and maintained photosynthetic function longer than non-altered plants.

In addition, the plants were more resistant to the effects of adverse environmental conditions. Surprisingly, by reducing the level of ethylene, all the leaves of the altered plants contained higher levels of chlorophyll and leaf protein, and functioned better than control leaves. “Thus, they are better able to survive conditions of drought and remain productive,” said Professor Gallie, who led a research team that included UCR Colleague Todd E. Young and Robert B. Meeley, of Pioneer Hi-Bred. “Erratic rainfall and conditions of drought have plagued farmers from time immemorial, and are responsible for substantial losses in crop yield when they do occur.”

For several years, Gallie said, a number of studies on global climate have predicted an increase in global temperature, and regional conditions of drought, which may have already begun. “Increasing drought tolerance in crops is highly valuable to U.S. and world agriculture now, and will be even more critical as our environment continues to change as a consequence of global warming,” said Gallie.

The findings by Gallie and his research team suggest that ethylene controls the level of leaf function under normal growth conditions, as well as during adverse environmental conditions.

Gallie’s research with corn opens the door to producing crops better able to withstand periodic losses in rainfall, including grains, which are the most important direct source of food for livestock and for a majority of humans. “Our discovery will assist farmers who depend on rainwater for their crops during those years when rainfall is low, particularly those who grow crops in arid areas, such as exists in many developing [is he is okay with this change] countries,” said Gallie. “As global warming continues to change our own environment in the U.S., our work will be important in helping U.S. farmers continue to produce the food we need even as our climate becomes unpredictable.”

Future inquiries will most likely focus on how ethylene may regulate other aspects of plant growth and development, such as during flower development and root growth, Gallie added.

Ricardo Duran | alfa
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>