Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoparticles to Aid Medical Diagnosis, Therapy

18.11.2004


Although they are one millionth the size of a human hair and are so small they cannot be seen with the naked eye, nanoparticles may become one of the most significant new products in the biomedical field thanks to University of Missouri-Columbia researchers who have developed a procedure to make them that is 240 times faster than previous methods.



Today, nanoparticles are used in applications as varied as making laundry detergent to medicines. However, for them to be beneficial in biomedical applications, they must be manufactured quickly under biologically friendly conditions. Currently that process takes 20 to 40 hours. Kattesh Katti, MU professor of radiology, physics and a senior research scientist at the MU Research Reactor; Raghuraman Kannan, research assistant professor of radiology and Kavita Katti, senior research chemist in radiology, have reduced the time to create gold and silver nanoparticles at room temperature to five to 10 minutes.

"If nanoparticles are to be used for optical imaging within the body, it is pivotal to be able to generate silver nanoparticles at a specific site within the body almost instantaneously," Kattesh Katti said. "Methods that require excessive heating for long durations will have limited biomedical utility."


Gold nanoparticles are biologically benign and are used to make biosensors for disease detection, produce electronic materials and treat cancer. Silver nanoparticles have potential applications in diagnostic biomedical optical imaging. Silver nanoparticles also are extensively used as anti-bacterial agents in the health industry, food storage, textile coatings and a number of environmental applications. They are superior to nanoparticles made of other materials because of their imaging capabilities and their resonance.

Katti said nanoscience represents an exciting new area of science for the 21st century. Working with MU Physics Professor Meera Chandrasekhar, Assistant Professor of Physics Suchi Guha, and graduate assistant Vijaya Kattumuri, Katti and Kannan also are examining the light imaging properties of nanoparticles. Katti says his lab will be able to supply nanoparticles for other research labs. "Our objective is to develop our own research and student training in nanoscience and nanotechnology and assist with research across the campus," Katti said. "Once we have done that, we will certainly be able to help researchers all across the United States."

MU has filed a patent request with the United States Patent Office on the silver nanoparticles. A patent for the gold nanoparticles will be filed later this month.

| newswise
Further information:
http://www.missouri.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>