Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Abundance of myostatin in infected swine may result in reduced muscle mass

18.11.2004


A study looking at chronic infectious respiratory diseases that affect most swine during their critical growing stage has shed new light on the reasons for restricted weight gain and reduced muscle mass.



In the November issue of the Journal of Nutrition, scientists at the University of Illinois at Urbana-Champaign report that the production of inflammatory cytokines by immune cells appears to be responsible for declines of both protein accretion and weight gain in swine infected with Porcine Reproductive and Respiratory Syndrome Virus (PRRSV).

The study also suggests that myostatin, a protein that limits muscle growth, is overproduced during infection, thereby reducing the growth of skeletal muscle, said Rodney W. Johnson, a professor in the department of animal sciences and the interdisciplinary Division of Nutritional Sciences.


Johnson and colleagues isolated pigs in disease-containment chambers and exposed different experimental groups to the bacterium Mycoplasma hyopneumoniae and/or PRRSV.

Almost all U.S. swine are exposed to the bacterium in production facilities, while about 60 percent are exposed to PRRSV. These pathogens open the way for other infectious agents. During the pivotal growing stage, pigs are at the most risk and suffer from cough, fevers and depressed appetite. Reduced market weight or increased time for pigs to reach a desired market weight can be a substantial cost to producers.

Infection from the bacterium alone did not reduce weight gain compared with the control group during the four-week-long experiment, but it did lead to the development of lesions that affected 8 percent of the total lung area in infected pigs. The finding was similar to earlier work in Johnson’s laboratory. However, the introduction of PRRSV caused damage to the lungs from the bacterium to jump to 40 percent. "One thing the virus does is suppress the immune system," Johnson said. "When PRRSV and mycoplasma are together, the PRRSV-induced immunosuppression allows the mycoplasma to spread unchecked. It really takes over the lungs."

PRRSV infection alone resulted in a daily weight gain of just 50 percent of that of the control animals (300 grams per day compared with 600 grams per day) and substantially less protein accretion. The drop in growth began three days after exposure to PRRSV and continued for the remaining two weeks of the trial.

PRRSV infects macrophages, a type of white blood cell that attacks pathogens. The virus is spread from the lungs as the macrophages migrate to other tissues. Before infected macrophages die from the virus, they produce inflammatory cytokines, hormone-like molecules that enable the immune system to influence other parts of the body. One part affected is the brain, which is why animals have reduced appetite when they are sick. "The cytokine molecules are the key, because they are the messengers used by the immune system to alter other systems that are relevant to growth," Johnson said.

At the suggestion of co-author Jeffery Escobar, a former doctoral student now with the USDA/ARS Children’s Research Center at the Baylor College of Medicine in Houston, the researchers examined myostatin gene expression in the infected pigs. Myostatin’s role in muscle development is becoming clear, Johnson said. Mice with the myostatin gene deleted become muscle-bound, and a defective myostatin gene has been linked to double muscling in cattle and to abnormally large muscles in a German child.

Johnson’s team found a substantial increase in the amount of myostatin mRNA in the muscles of infected pigs. "We have shown, using an infectious disease model where animals grow slowly, that there is an increase in muscle myostatin mRNA."

Jim Barlow | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Life Sciences:

nachricht New technique unveils 'matrix' inside tissues and tumors
29.06.2017 | University of Copenhagen The Faculty of Health and Medical Sciences

nachricht Designed proteins to treat muscular dystrophy
29.06.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>