Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sick Kids researchers confirm that cancer stem cells initiate and grow brain tumours

18.11.2004


Opens the door for new therapeutic targets



Researchers at The Hospital for Sick Children (Sick Kids) and the University of Toronto (U of T) have confirmed that childhood and adult brain tumours originate from cancer stem cells and that these stem cells fuel and maintain tumour growth. This discovery has led to development of a mouse model for human brain tumours and opens the door for new therapeutic targets for the treatment of brain tumours. This research is reported in the November 18, 2004 issue of the scientific journal Nature.

"Now that we have confirmed that a small number of cancer stem cells initiates and maintains human brain tumour growth in a mouse model, we can potentially use the mouse model with each patient’s tumour cells to see if therapies are working to conquer that patient’s tumour," said Dr. Peter Dirks, the study’s principal investigator, a scientist and neurosurgeon at Sick Kids, and an assistant professor of Neurosurgery at U of T. "A functional analysis of the brain tumour stem cell may also give new insight into patient prognosis that may then warrant individual tailoring of therapy." Dr. Dirks’ laboratory was able to regrow an exact replica of patients’ brain tumours in a mouse from the isolated cancer stem cells, or brain tumour initiating cells. They were then able to study the growth of the human brain tumour in the mouse model using the advanced imaging technology in the Mouse Imaging Centre (MiCE) at Sick Kids.


Brain tumours are the leading cause of cancer mortality in children and remain difficult to cure despite advances in surgery and drug treatments. In adults, most brain tumours are also among the harshest cancers with formidable resistance to most therapies. "Next, we are going to study the gene expression of the brain tumour stem cells. Once we have identified what genes are expressed in those cells, we will then be able to target these genes using new drugs or genetic-type therapies," said Dr. Sheila Singh, the paper’s lead author and Sick Kids neurosurgery resident and U of T graduate student who is enrolled in Sick Kids’ Clinician-Scientist Training Program. Dr. Singh was supported by a fellowship from The Terry Fox Foundation, as well as by funding from the Neurosurgical Research and Education Foundation and the American Brain Tumor Association.

"We have shown that it is really worthwhile to invest further in studying brain tumour stem cells, as we will be able to determine if current therapies are failing because they are not stopping the cancer stem cells," added Dr. Dirks. "It also looks like cancer stem cells play a role in other solid tumours such as breast cancer, so we can all work together to develop new treatments for these cancers."

Other members of the research team included Dr. Cynthia Hawkins, Dr. Ian Clarke, Dr. Takuichiro Hide and Dr. Mark Henkelman, all from Sick Kids, Dr. Jeremy Squire and Jane Bayani from the Ontario Cancer Institute, and Dr. Michael Cusimano from St. Michael’s Hospital.

Laura Greer | EurekAlert!
Further information:
http://www.sickkids.ca
http://www.utoronto.ca

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>