Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sick Kids researchers confirm that cancer stem cells initiate and grow brain tumours


Opens the door for new therapeutic targets

Researchers at The Hospital for Sick Children (Sick Kids) and the University of Toronto (U of T) have confirmed that childhood and adult brain tumours originate from cancer stem cells and that these stem cells fuel and maintain tumour growth. This discovery has led to development of a mouse model for human brain tumours and opens the door for new therapeutic targets for the treatment of brain tumours. This research is reported in the November 18, 2004 issue of the scientific journal Nature.

"Now that we have confirmed that a small number of cancer stem cells initiates and maintains human brain tumour growth in a mouse model, we can potentially use the mouse model with each patient’s tumour cells to see if therapies are working to conquer that patient’s tumour," said Dr. Peter Dirks, the study’s principal investigator, a scientist and neurosurgeon at Sick Kids, and an assistant professor of Neurosurgery at U of T. "A functional analysis of the brain tumour stem cell may also give new insight into patient prognosis that may then warrant individual tailoring of therapy." Dr. Dirks’ laboratory was able to regrow an exact replica of patients’ brain tumours in a mouse from the isolated cancer stem cells, or brain tumour initiating cells. They were then able to study the growth of the human brain tumour in the mouse model using the advanced imaging technology in the Mouse Imaging Centre (MiCE) at Sick Kids.

Brain tumours are the leading cause of cancer mortality in children and remain difficult to cure despite advances in surgery and drug treatments. In adults, most brain tumours are also among the harshest cancers with formidable resistance to most therapies. "Next, we are going to study the gene expression of the brain tumour stem cells. Once we have identified what genes are expressed in those cells, we will then be able to target these genes using new drugs or genetic-type therapies," said Dr. Sheila Singh, the paper’s lead author and Sick Kids neurosurgery resident and U of T graduate student who is enrolled in Sick Kids’ Clinician-Scientist Training Program. Dr. Singh was supported by a fellowship from The Terry Fox Foundation, as well as by funding from the Neurosurgical Research and Education Foundation and the American Brain Tumor Association.

"We have shown that it is really worthwhile to invest further in studying brain tumour stem cells, as we will be able to determine if current therapies are failing because they are not stopping the cancer stem cells," added Dr. Dirks. "It also looks like cancer stem cells play a role in other solid tumours such as breast cancer, so we can all work together to develop new treatments for these cancers."

Other members of the research team included Dr. Cynthia Hawkins, Dr. Ian Clarke, Dr. Takuichiro Hide and Dr. Mark Henkelman, all from Sick Kids, Dr. Jeremy Squire and Jane Bayani from the Ontario Cancer Institute, and Dr. Michael Cusimano from St. Michael’s Hospital.

Laura Greer | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>