Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sick Kids researchers confirm that cancer stem cells initiate and grow brain tumours

18.11.2004


Opens the door for new therapeutic targets



Researchers at The Hospital for Sick Children (Sick Kids) and the University of Toronto (U of T) have confirmed that childhood and adult brain tumours originate from cancer stem cells and that these stem cells fuel and maintain tumour growth. This discovery has led to development of a mouse model for human brain tumours and opens the door for new therapeutic targets for the treatment of brain tumours. This research is reported in the November 18, 2004 issue of the scientific journal Nature.

"Now that we have confirmed that a small number of cancer stem cells initiates and maintains human brain tumour growth in a mouse model, we can potentially use the mouse model with each patient’s tumour cells to see if therapies are working to conquer that patient’s tumour," said Dr. Peter Dirks, the study’s principal investigator, a scientist and neurosurgeon at Sick Kids, and an assistant professor of Neurosurgery at U of T. "A functional analysis of the brain tumour stem cell may also give new insight into patient prognosis that may then warrant individual tailoring of therapy." Dr. Dirks’ laboratory was able to regrow an exact replica of patients’ brain tumours in a mouse from the isolated cancer stem cells, or brain tumour initiating cells. They were then able to study the growth of the human brain tumour in the mouse model using the advanced imaging technology in the Mouse Imaging Centre (MiCE) at Sick Kids.


Brain tumours are the leading cause of cancer mortality in children and remain difficult to cure despite advances in surgery and drug treatments. In adults, most brain tumours are also among the harshest cancers with formidable resistance to most therapies. "Next, we are going to study the gene expression of the brain tumour stem cells. Once we have identified what genes are expressed in those cells, we will then be able to target these genes using new drugs or genetic-type therapies," said Dr. Sheila Singh, the paper’s lead author and Sick Kids neurosurgery resident and U of T graduate student who is enrolled in Sick Kids’ Clinician-Scientist Training Program. Dr. Singh was supported by a fellowship from The Terry Fox Foundation, as well as by funding from the Neurosurgical Research and Education Foundation and the American Brain Tumor Association.

"We have shown that it is really worthwhile to invest further in studying brain tumour stem cells, as we will be able to determine if current therapies are failing because they are not stopping the cancer stem cells," added Dr. Dirks. "It also looks like cancer stem cells play a role in other solid tumours such as breast cancer, so we can all work together to develop new treatments for these cancers."

Other members of the research team included Dr. Cynthia Hawkins, Dr. Ian Clarke, Dr. Takuichiro Hide and Dr. Mark Henkelman, all from Sick Kids, Dr. Jeremy Squire and Jane Bayani from the Ontario Cancer Institute, and Dr. Michael Cusimano from St. Michael’s Hospital.

Laura Greer | EurekAlert!
Further information:
http://www.sickkids.ca
http://www.utoronto.ca

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>