Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No getting around RET

18.11.2004


Researchers find no role for RET-independent GFR-alpha in development or regeneration

Neurons depend on external molecular signals for their very survival. These molecules, collectively referred to as neurotrophic factors, include a family of four GDNF Family Ligands (GFLs) that bind to specific receptor sites on the surfaces of neural cells. These sites allow GFLs to signal through a receptor complex composed of the RET tyrosine kinase and a GFRá-family receptor. Tyrosine kinases, such as RET, are well-known for their function in phosphorylation cascades that span the cell membrane. The role of the GFRá co-receptors in these complexes was long thought to be limited to as a co-receptor for RET, but GFRs have recently been suggested to play other roles as well.

The individual functions of the RET and GFRá subunits in these receptor complexes, which are important in developmental milieux from peripheral neurogenesis to the developing kidney, remains a thorny question complicated by the fact that GFRá is much more widely expressed in the body than is RET and that, in vitro, cells expressing GFRá1 without RET have been shown to respond to GDNF signals. A report by Hideki Enomoto (Team Leader, Laboratory for Neuronal Differentiation and Regeneration) and colleagues at the RIKEN Center for Developmental Biology and the Washington University School of Medicine published in the November 18 issue of Neuron now challenges the view that RET-independent GFRá1 signaling plays a significant physiological role in either development or regeneration.



Enomoto first devised an elegant experimental system to make it possible to generate mice specifically lacking RET-independent GFRá1. The study of GFRá deficiencies in vivo is dogged by the lethality of the phenotype, in which the absence of enteric neurons and functioning kidneys results in death soon after birth. In vitro studies and the proximity of RET-independent GFRá and RET-expressing cells in some developmental regions, however, have prompted strong speculation that GFRá might be able to operate even in the absence of RET indigenous to the cell. It has been suggested that this might take the form of either trans signaling, in which the GFRá receptor captures diffusible GFLs and presents them to a neighboring RET-expressing cell, or through a separate signaling mechanism mediated by GFL-activated neural cell adhesion molecules (NCAMs).

Given this body of work showing the likelihood of a physiological role for RET-independent GFRá1 activity, Enomoto et al. decided to test whether the in vitro evidence would be borne out in living mice. The team first showed that mice homozygous for a transgene deleting an important segment of the GFRá1 gene died in the perinatal period, while heterozygotes (which carried only a single copy of the transgene) were healthy and fertile. On comparing specific embryonic regions in hetero- and homozygous mice, they found associations between RET-expressing and RET-independent GFRá1 cells in kidney, enteric and motor neurons, as well as the expected disturbances in development. However, when they next generated mice that were only capable of expressing GFRá1 only in the RET-expressing cells (by cloning GFRá1 cDNA into a region under the control of the Ret promoter and crossbreeding the resulting animals with GFRá1 heterozygotes), they were surprised to discover the mice were born healthy and free of any evident developmental defects in the kidney or nervous system. They found no trace of GFRá1 mRNA in non-Ret-expressing cells in these mice (which they named Cis-only mice, for their lack of trans signaling), while GFRá1 transcripts were detected as expected in RET-positive cells, proving that the conditional expression scheme had worked.

Analysis of individual regions known to be susceptible developmental failure on loss of GFRá1 function, such as the kidneys, motor and enteric neurons and certain parts of the central nervous system during development and following injury, showed that Cis-only mice develop and regenerate structures that are both morphologically normal and fully functional.

Investigating the second question of a possible alternate RET-independent GDNF receptor complex thought to involve neural cell adhesion molecules, they next examined Cis-only mouse olfactory bulbs. These bulbs are reduced in size in NCAM-deficient mice as the result of impaired migration of neural precursors through a zone called the rostral migratory stream and swell with cells that have failed to reach their normal destination; this phenotype is seen in mice only weakly lacking GFRá1 (which is thought by some to regulate NCAM-mediated cell adhesion), but not in mice lacking RET. Again, the Cis-only mice showed no discernible differences from wild type.

This comprehensive series of experiments makes a convincing case against any essential physiological role for RET-independent GFRá1, but leaves the question of why GFRá1 would be more widely expressed if it indeed plays no role without RET. It may be the case that GFRá receptors associate with other partners that have yet to be identified. Whatever the answer, by laying to rest a theory that had been strongly supported by in vitro evidence, the Enomoto report serves to underscore the importance of differences between the behavior of cells in the body and cells in a dish.

Doug Sipp | EurekAlert!
Further information:
http://www.riken.jp

More articles from Life Sciences:

nachricht Historical rainfall levels are significant in carbon emissions from soil
30.05.2017 | University of Texas at Austin

nachricht 3D printer inks from the woods
30.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

3D printer inks from the woods

30.05.2017 | Life Sciences

How circadian clocks communicate with each other

30.05.2017 | Life Sciences

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible

30.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>