Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No getting around RET

18.11.2004


Researchers find no role for RET-independent GFR-alpha in development or regeneration

Neurons depend on external molecular signals for their very survival. These molecules, collectively referred to as neurotrophic factors, include a family of four GDNF Family Ligands (GFLs) that bind to specific receptor sites on the surfaces of neural cells. These sites allow GFLs to signal through a receptor complex composed of the RET tyrosine kinase and a GFRá-family receptor. Tyrosine kinases, such as RET, are well-known for their function in phosphorylation cascades that span the cell membrane. The role of the GFRá co-receptors in these complexes was long thought to be limited to as a co-receptor for RET, but GFRs have recently been suggested to play other roles as well.

The individual functions of the RET and GFRá subunits in these receptor complexes, which are important in developmental milieux from peripheral neurogenesis to the developing kidney, remains a thorny question complicated by the fact that GFRá is much more widely expressed in the body than is RET and that, in vitro, cells expressing GFRá1 without RET have been shown to respond to GDNF signals. A report by Hideki Enomoto (Team Leader, Laboratory for Neuronal Differentiation and Regeneration) and colleagues at the RIKEN Center for Developmental Biology and the Washington University School of Medicine published in the November 18 issue of Neuron now challenges the view that RET-independent GFRá1 signaling plays a significant physiological role in either development or regeneration.



Enomoto first devised an elegant experimental system to make it possible to generate mice specifically lacking RET-independent GFRá1. The study of GFRá deficiencies in vivo is dogged by the lethality of the phenotype, in which the absence of enteric neurons and functioning kidneys results in death soon after birth. In vitro studies and the proximity of RET-independent GFRá and RET-expressing cells in some developmental regions, however, have prompted strong speculation that GFRá might be able to operate even in the absence of RET indigenous to the cell. It has been suggested that this might take the form of either trans signaling, in which the GFRá receptor captures diffusible GFLs and presents them to a neighboring RET-expressing cell, or through a separate signaling mechanism mediated by GFL-activated neural cell adhesion molecules (NCAMs).

Given this body of work showing the likelihood of a physiological role for RET-independent GFRá1 activity, Enomoto et al. decided to test whether the in vitro evidence would be borne out in living mice. The team first showed that mice homozygous for a transgene deleting an important segment of the GFRá1 gene died in the perinatal period, while heterozygotes (which carried only a single copy of the transgene) were healthy and fertile. On comparing specific embryonic regions in hetero- and homozygous mice, they found associations between RET-expressing and RET-independent GFRá1 cells in kidney, enteric and motor neurons, as well as the expected disturbances in development. However, when they next generated mice that were only capable of expressing GFRá1 only in the RET-expressing cells (by cloning GFRá1 cDNA into a region under the control of the Ret promoter and crossbreeding the resulting animals with GFRá1 heterozygotes), they were surprised to discover the mice were born healthy and free of any evident developmental defects in the kidney or nervous system. They found no trace of GFRá1 mRNA in non-Ret-expressing cells in these mice (which they named Cis-only mice, for their lack of trans signaling), while GFRá1 transcripts were detected as expected in RET-positive cells, proving that the conditional expression scheme had worked.

Analysis of individual regions known to be susceptible developmental failure on loss of GFRá1 function, such as the kidneys, motor and enteric neurons and certain parts of the central nervous system during development and following injury, showed that Cis-only mice develop and regenerate structures that are both morphologically normal and fully functional.

Investigating the second question of a possible alternate RET-independent GDNF receptor complex thought to involve neural cell adhesion molecules, they next examined Cis-only mouse olfactory bulbs. These bulbs are reduced in size in NCAM-deficient mice as the result of impaired migration of neural precursors through a zone called the rostral migratory stream and swell with cells that have failed to reach their normal destination; this phenotype is seen in mice only weakly lacking GFRá1 (which is thought by some to regulate NCAM-mediated cell adhesion), but not in mice lacking RET. Again, the Cis-only mice showed no discernible differences from wild type.

This comprehensive series of experiments makes a convincing case against any essential physiological role for RET-independent GFRá1, but leaves the question of why GFRá1 would be more widely expressed if it indeed plays no role without RET. It may be the case that GFRá receptors associate with other partners that have yet to be identified. Whatever the answer, by laying to rest a theory that had been strongly supported by in vitro evidence, the Enomoto report serves to underscore the importance of differences between the behavior of cells in the body and cells in a dish.

Doug Sipp | EurekAlert!
Further information:
http://www.riken.jp

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>