Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No getting around RET

18.11.2004


Researchers find no role for RET-independent GFR-alpha in development or regeneration

Neurons depend on external molecular signals for their very survival. These molecules, collectively referred to as neurotrophic factors, include a family of four GDNF Family Ligands (GFLs) that bind to specific receptor sites on the surfaces of neural cells. These sites allow GFLs to signal through a receptor complex composed of the RET tyrosine kinase and a GFRá-family receptor. Tyrosine kinases, such as RET, are well-known for their function in phosphorylation cascades that span the cell membrane. The role of the GFRá co-receptors in these complexes was long thought to be limited to as a co-receptor for RET, but GFRs have recently been suggested to play other roles as well.

The individual functions of the RET and GFRá subunits in these receptor complexes, which are important in developmental milieux from peripheral neurogenesis to the developing kidney, remains a thorny question complicated by the fact that GFRá is much more widely expressed in the body than is RET and that, in vitro, cells expressing GFRá1 without RET have been shown to respond to GDNF signals. A report by Hideki Enomoto (Team Leader, Laboratory for Neuronal Differentiation and Regeneration) and colleagues at the RIKEN Center for Developmental Biology and the Washington University School of Medicine published in the November 18 issue of Neuron now challenges the view that RET-independent GFRá1 signaling plays a significant physiological role in either development or regeneration.



Enomoto first devised an elegant experimental system to make it possible to generate mice specifically lacking RET-independent GFRá1. The study of GFRá deficiencies in vivo is dogged by the lethality of the phenotype, in which the absence of enteric neurons and functioning kidneys results in death soon after birth. In vitro studies and the proximity of RET-independent GFRá and RET-expressing cells in some developmental regions, however, have prompted strong speculation that GFRá might be able to operate even in the absence of RET indigenous to the cell. It has been suggested that this might take the form of either trans signaling, in which the GFRá receptor captures diffusible GFLs and presents them to a neighboring RET-expressing cell, or through a separate signaling mechanism mediated by GFL-activated neural cell adhesion molecules (NCAMs).

Given this body of work showing the likelihood of a physiological role for RET-independent GFRá1 activity, Enomoto et al. decided to test whether the in vitro evidence would be borne out in living mice. The team first showed that mice homozygous for a transgene deleting an important segment of the GFRá1 gene died in the perinatal period, while heterozygotes (which carried only a single copy of the transgene) were healthy and fertile. On comparing specific embryonic regions in hetero- and homozygous mice, they found associations between RET-expressing and RET-independent GFRá1 cells in kidney, enteric and motor neurons, as well as the expected disturbances in development. However, when they next generated mice that were only capable of expressing GFRá1 only in the RET-expressing cells (by cloning GFRá1 cDNA into a region under the control of the Ret promoter and crossbreeding the resulting animals with GFRá1 heterozygotes), they were surprised to discover the mice were born healthy and free of any evident developmental defects in the kidney or nervous system. They found no trace of GFRá1 mRNA in non-Ret-expressing cells in these mice (which they named Cis-only mice, for their lack of trans signaling), while GFRá1 transcripts were detected as expected in RET-positive cells, proving that the conditional expression scheme had worked.

Analysis of individual regions known to be susceptible developmental failure on loss of GFRá1 function, such as the kidneys, motor and enteric neurons and certain parts of the central nervous system during development and following injury, showed that Cis-only mice develop and regenerate structures that are both morphologically normal and fully functional.

Investigating the second question of a possible alternate RET-independent GDNF receptor complex thought to involve neural cell adhesion molecules, they next examined Cis-only mouse olfactory bulbs. These bulbs are reduced in size in NCAM-deficient mice as the result of impaired migration of neural precursors through a zone called the rostral migratory stream and swell with cells that have failed to reach their normal destination; this phenotype is seen in mice only weakly lacking GFRá1 (which is thought by some to regulate NCAM-mediated cell adhesion), but not in mice lacking RET. Again, the Cis-only mice showed no discernible differences from wild type.

This comprehensive series of experiments makes a convincing case against any essential physiological role for RET-independent GFRá1, but leaves the question of why GFRá1 would be more widely expressed if it indeed plays no role without RET. It may be the case that GFRá receptors associate with other partners that have yet to be identified. Whatever the answer, by laying to rest a theory that had been strongly supported by in vitro evidence, the Enomoto report serves to underscore the importance of differences between the behavior of cells in the body and cells in a dish.

Doug Sipp | EurekAlert!
Further information:
http://www.riken.jp

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>