Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome of ancient fish could reveal evolutionary mysteries

17.11.2004


A prehistoric fish that until 1938 was thought to be extinct has caught the eye of geneticists at the Stanford University School of Medicine who hope to sequence the ancient genome to learn how animals evolved to live on land.



The 5-foot, 130-pound fish in question, called the coelacanth, ekes out an existence in cool, deep-water caves off the Comoro Islands in the Indian Ocean and northern Indonesia. Its lobed fins, skeleton structure and large, round scales are practically unchanged from its fossilized ancestors. This resemblance is what makes it an attractive target for sequencing, according to work published in this week’s online issue of Genome Research.

Genetics professor Richard Myers, PhD, co-authored the paper, which makes the case for sequencing the coelacanth genome. "It’s just making an argument that if we want to understand this level of evolution, this is what we need to do," he said. The next step is convincing a funding agency, such as the National Institutes of Health or the Department of Energy, to add the coelacanth to a list of high priority organisms to sequence.


Geneticists often compare gene sequences between species to learn how traits evolved. To learn what makes a mammal a mammal, for instance, they may compare a gene sequence in humans, mice, dogs, chickens and frogs to see what sequences the mammals share and that frogs and chickens lack. If all the mammals have one sequence in common, it is likely to be important for making milk, growing hair or other features unique to mammals.

This type of analysis has been all but impossible for learning how land animals crawled ashore and developed limbs and lungs. The problem is this: as fish evolved they went through a flurry of genetic alterations, making fish species almost as different from each other as they are from land animals. Given this vast diversity, a sequence in land animals that’s missing in one of the fish species is not necessarily involved in land animal biology, according to James Noonan, PhD, who did the coelacanth work as a graduate student at Stanford with Myers, the Stanford W. Ascherman, MD, FACS Professor in Genetics. That genetic difference may just be the result of random changes in that particular fish.

In contrast, the coelacanth seems to have changed very little--physically or genetically--since one wayward branch of the fish family headed for land roughly 360 million years ago. Because it has changed so little the coelacanth is ideal for genetic comparisons. Any genetic feature found in all land animals but lacking in the coelacanth could represent a change that makes living on land possible.

Noonan said that coelacanth’s close relative, the lungfish, could also fill in the genetic gap between land animals and fish, but the coelacanth has one practical advantage: "The lungfish genome is enormous," said Noonan, who is now a postdoctoral fellow at the Lawrence Berkeley National Laboratory. At 35 times the size of the human genome, sequencing the lungfish is an unlikely proposition. In contrast, the coelacanth genome is smaller than that of either humans or mice.

To make his case for the coelacanth, Noonan sequenced a group of coelacanth genes called the protocadherin gene cluster. He chose this region because it is extremely variable between different species, making it easy to see differences and similarities. This region has 54 genes in humans and 97 genes in the zebrafish, whose genome has been sequenced. He found that the coelacanth had 49 genes in the cluster, much like humans and other land animals. What’s more, humans and coelacanths both have subgroups of these genes that zebrafish lack. "The coelacanth is evolving very slowly, that’s what makes them interesting," Noonan said.

Although it isn’t known why coelacanths evolve so slowly, Noonan suggested that their lifespan might be at issue. Where most fish reproduce quickly and have short generation times, the coelacanth reproduces slowly and gives birth to live young. This means that the coelacanth has had fewer generations of offspring to accumulate mutations.

The fact that coelacanth is available for sequencing is a lucky accident. They were thought to be extinct until 1938 when museum curator Marjorie Courtaney-Latimer discovered a specimen in a fisherman’s catch near Cape Town, South Africa. In 1998 a honeymooning researcher found a second population off the coast of Indonesia.

Last year Myers and David Kingsley, PhD, professor of developmental biology, successfully recommended that a fish called the stickleback be added to the list of organisms to be sequenced by the National Human Genome Research Institute at the NIH. Myers said he, Noonan and other researchers who contributed to the article in Genome Research will be submitting the coelacanth for consideration soon.

Other Stanford researchers at the Stanford Human Genome Center who contributed to this work include Jane Grimswood, finishing group leader; Jeremy Schmutz, informatics group leader, and Mark Dickson, production sequence group leader.

Amy Adams | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>