Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome of ancient fish could reveal evolutionary mysteries

17.11.2004


A prehistoric fish that until 1938 was thought to be extinct has caught the eye of geneticists at the Stanford University School of Medicine who hope to sequence the ancient genome to learn how animals evolved to live on land.



The 5-foot, 130-pound fish in question, called the coelacanth, ekes out an existence in cool, deep-water caves off the Comoro Islands in the Indian Ocean and northern Indonesia. Its lobed fins, skeleton structure and large, round scales are practically unchanged from its fossilized ancestors. This resemblance is what makes it an attractive target for sequencing, according to work published in this week’s online issue of Genome Research.

Genetics professor Richard Myers, PhD, co-authored the paper, which makes the case for sequencing the coelacanth genome. "It’s just making an argument that if we want to understand this level of evolution, this is what we need to do," he said. The next step is convincing a funding agency, such as the National Institutes of Health or the Department of Energy, to add the coelacanth to a list of high priority organisms to sequence.


Geneticists often compare gene sequences between species to learn how traits evolved. To learn what makes a mammal a mammal, for instance, they may compare a gene sequence in humans, mice, dogs, chickens and frogs to see what sequences the mammals share and that frogs and chickens lack. If all the mammals have one sequence in common, it is likely to be important for making milk, growing hair or other features unique to mammals.

This type of analysis has been all but impossible for learning how land animals crawled ashore and developed limbs and lungs. The problem is this: as fish evolved they went through a flurry of genetic alterations, making fish species almost as different from each other as they are from land animals. Given this vast diversity, a sequence in land animals that’s missing in one of the fish species is not necessarily involved in land animal biology, according to James Noonan, PhD, who did the coelacanth work as a graduate student at Stanford with Myers, the Stanford W. Ascherman, MD, FACS Professor in Genetics. That genetic difference may just be the result of random changes in that particular fish.

In contrast, the coelacanth seems to have changed very little--physically or genetically--since one wayward branch of the fish family headed for land roughly 360 million years ago. Because it has changed so little the coelacanth is ideal for genetic comparisons. Any genetic feature found in all land animals but lacking in the coelacanth could represent a change that makes living on land possible.

Noonan said that coelacanth’s close relative, the lungfish, could also fill in the genetic gap between land animals and fish, but the coelacanth has one practical advantage: "The lungfish genome is enormous," said Noonan, who is now a postdoctoral fellow at the Lawrence Berkeley National Laboratory. At 35 times the size of the human genome, sequencing the lungfish is an unlikely proposition. In contrast, the coelacanth genome is smaller than that of either humans or mice.

To make his case for the coelacanth, Noonan sequenced a group of coelacanth genes called the protocadherin gene cluster. He chose this region because it is extremely variable between different species, making it easy to see differences and similarities. This region has 54 genes in humans and 97 genes in the zebrafish, whose genome has been sequenced. He found that the coelacanth had 49 genes in the cluster, much like humans and other land animals. What’s more, humans and coelacanths both have subgroups of these genes that zebrafish lack. "The coelacanth is evolving very slowly, that’s what makes them interesting," Noonan said.

Although it isn’t known why coelacanths evolve so slowly, Noonan suggested that their lifespan might be at issue. Where most fish reproduce quickly and have short generation times, the coelacanth reproduces slowly and gives birth to live young. This means that the coelacanth has had fewer generations of offspring to accumulate mutations.

The fact that coelacanth is available for sequencing is a lucky accident. They were thought to be extinct until 1938 when museum curator Marjorie Courtaney-Latimer discovered a specimen in a fisherman’s catch near Cape Town, South Africa. In 1998 a honeymooning researcher found a second population off the coast of Indonesia.

Last year Myers and David Kingsley, PhD, professor of developmental biology, successfully recommended that a fish called the stickleback be added to the list of organisms to be sequenced by the National Human Genome Research Institute at the NIH. Myers said he, Noonan and other researchers who contributed to the article in Genome Research will be submitting the coelacanth for consideration soon.

Other Stanford researchers at the Stanford Human Genome Center who contributed to this work include Jane Grimswood, finishing group leader; Jeremy Schmutz, informatics group leader, and Mark Dickson, production sequence group leader.

Amy Adams | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht Synthetic nanoparticles achieve the complexity of protein molecules
24.01.2017 | Carnegie Mellon University

nachricht Immune Defense Without Collateral Damage
24.01.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>