Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Building a Tree of Life Needs Less ’Wood’

17.11.2004


Building a "tree of life" for all the species on the planet may be easier than first thought, according to a study by UC Davis researchers published in the journal Science Nov. 12.



A tree of life shows how living things have evolved since the origins of life billions of years ago, grouping related organisms on the same branch. Such trees provide an organizing framework for biology. They can be used for predicting the properties of poorly known species and are powerful tools for tasks such as drug discovery, said Michael Sanderson, professor of evolution and ecology at UC Davis and senior author on the paper.

Comparing protein and DNA sequences is a powerful tool for creating trees, because large amounts of data can be generated quite easily. But existing databases contain big gaps, because some organisms have been studied very heavily while many others are represented by single entries or not at all.


Postdoctoral researcher Amy Driskell and colleagues from Sanderson’s laboratory analyzed over 300,000 protein and DNA sequences deposited by scientists in the GenBank and Swiss-Prot public databases. They found that even though there were big gaps in the data, with many groups of organisms represented by a single sequence, it was still possible to construct useful trees starting from samples of 16,000 green plants and 7,500 plants and animals. "It’s pretty surprising that you can draw conclusions from such a small amount of information, compared to how much there would be if the databases contained a better sample of biodiversity," Sanderson said.

Researchers can now take the same approach and add more information from sequence databases, increasing the resolution of phylogenetic trees, he said.

The other authors on the paper are Cécile Ané, now assistant professor of statistics at the University of Wisconsin, Madison; UC Davis postdoctoral researchers Gordon Burleigh and Michelle McMahon; and graduate student Brian O’Meara, also at UC Davis. The work is supported by grants from the National Science Foundation.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>