Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Building a Tree of Life Needs Less ’Wood’

17.11.2004


Building a "tree of life" for all the species on the planet may be easier than first thought, according to a study by UC Davis researchers published in the journal Science Nov. 12.



A tree of life shows how living things have evolved since the origins of life billions of years ago, grouping related organisms on the same branch. Such trees provide an organizing framework for biology. They can be used for predicting the properties of poorly known species and are powerful tools for tasks such as drug discovery, said Michael Sanderson, professor of evolution and ecology at UC Davis and senior author on the paper.

Comparing protein and DNA sequences is a powerful tool for creating trees, because large amounts of data can be generated quite easily. But existing databases contain big gaps, because some organisms have been studied very heavily while many others are represented by single entries or not at all.


Postdoctoral researcher Amy Driskell and colleagues from Sanderson’s laboratory analyzed over 300,000 protein and DNA sequences deposited by scientists in the GenBank and Swiss-Prot public databases. They found that even though there were big gaps in the data, with many groups of organisms represented by a single sequence, it was still possible to construct useful trees starting from samples of 16,000 green plants and 7,500 plants and animals. "It’s pretty surprising that you can draw conclusions from such a small amount of information, compared to how much there would be if the databases contained a better sample of biodiversity," Sanderson said.

Researchers can now take the same approach and add more information from sequence databases, increasing the resolution of phylogenetic trees, he said.

The other authors on the paper are Cécile Ané, now assistant professor of statistics at the University of Wisconsin, Madison; UC Davis postdoctoral researchers Gordon Burleigh and Michelle McMahon; and graduate student Brian O’Meara, also at UC Davis. The work is supported by grants from the National Science Foundation.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>