Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Building a Tree of Life Needs Less ’Wood’

17.11.2004


Building a "tree of life" for all the species on the planet may be easier than first thought, according to a study by UC Davis researchers published in the journal Science Nov. 12.



A tree of life shows how living things have evolved since the origins of life billions of years ago, grouping related organisms on the same branch. Such trees provide an organizing framework for biology. They can be used for predicting the properties of poorly known species and are powerful tools for tasks such as drug discovery, said Michael Sanderson, professor of evolution and ecology at UC Davis and senior author on the paper.

Comparing protein and DNA sequences is a powerful tool for creating trees, because large amounts of data can be generated quite easily. But existing databases contain big gaps, because some organisms have been studied very heavily while many others are represented by single entries or not at all.


Postdoctoral researcher Amy Driskell and colleagues from Sanderson’s laboratory analyzed over 300,000 protein and DNA sequences deposited by scientists in the GenBank and Swiss-Prot public databases. They found that even though there were big gaps in the data, with many groups of organisms represented by a single sequence, it was still possible to construct useful trees starting from samples of 16,000 green plants and 7,500 plants and animals. "It’s pretty surprising that you can draw conclusions from such a small amount of information, compared to how much there would be if the databases contained a better sample of biodiversity," Sanderson said.

Researchers can now take the same approach and add more information from sequence databases, increasing the resolution of phylogenetic trees, he said.

The other authors on the paper are Cécile Ané, now assistant professor of statistics at the University of Wisconsin, Madison; UC Davis postdoctoral researchers Gordon Burleigh and Michelle McMahon; and graduate student Brian O’Meara, also at UC Davis. The work is supported by grants from the National Science Foundation.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>