Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IRCM scientist demonstrates basic active mechanism of immune-system cells

17.11.2004


Major breakthrough in the treatment of autoimmune diseases



In the upcoming issue of Immunity, a highly regarded journal put out by the Cell group, Dr. André Veillette, a scientist at the Institut de recherches cliniques de Montréal (IRCM), and his team will publish the results of a study that could revolutionize the treatment of autoimmune diseases, such as juvenile diabetes, lupus, and rheumatoid arthritis. Contemporary medicine has to date achieved only mixed results in dealing with these diseases, which affect hundreds of thousands of Canadians.

Dr. Veillette’s team has discovered one of the basic mechanisms that control the production of antibodies by immune-system cells known as B lymphocytes or B cells. In subjects with autoimmune diseases, these lymphocytes, which are also normally responsible for fighting infection, are hyperactive, causing antibodies secreted by superactivated lymphocytes to turn against the body. This leads to the development of autoimmune diseases, which are characterized by debilitating inflammation and advanced tissue damage. Dr. Veillette’s breakthrough identifies a cascade of molecular reactions involved in this type of damage, providing new therapeutic targets that could be used to reduce attacks on the pancreas in juvenile diabetes, on the kidneys in lupus, and on the joints in rheumatoid arthritis.


This publication is a major milestone for Dr. Veillette, an internationally recognized expert on the identification of molecular mechanisms that control the immune response. Initial findings were published in Nature Immunology in 2001, followed by an article in Nature Cell Biology in 2003. The article slated for publication in the November 2004 issue of Immunity provides genetic evidence of the importance of the molecular mechanism discovered by Dr. Veillette’s team.

More precisely, this discovery links three elements: a receptor (or "sensor") located on the surface of the lymphocytes, known as SLAM; an adaptive protein (or "molecular relay") located in the cell, known as SAP; and FynT, an enzyme that is also located within the cell. Using mice with genetically mutated SLAM, SAP or FynT proteins, Dr. Veillette provided evidence of the importance of links among the three proteins. It should also be noted that SAP protein mutations occur in humans, causing a fatal immune dysfunction known as "X-linked lymphoproliferation" (XLP). Dr. Veillette’s discovery paves the way for the development of SLAM, SAP or FynT inhibitors, which could block excessive immune responses observed in patients with autoimmune diseases.

François Brochu | EurekAlert!
Further information:
http://www.ircm.qc.ca

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>