Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IRCM scientist demonstrates basic active mechanism of immune-system cells

17.11.2004


Major breakthrough in the treatment of autoimmune diseases



In the upcoming issue of Immunity, a highly regarded journal put out by the Cell group, Dr. André Veillette, a scientist at the Institut de recherches cliniques de Montréal (IRCM), and his team will publish the results of a study that could revolutionize the treatment of autoimmune diseases, such as juvenile diabetes, lupus, and rheumatoid arthritis. Contemporary medicine has to date achieved only mixed results in dealing with these diseases, which affect hundreds of thousands of Canadians.

Dr. Veillette’s team has discovered one of the basic mechanisms that control the production of antibodies by immune-system cells known as B lymphocytes or B cells. In subjects with autoimmune diseases, these lymphocytes, which are also normally responsible for fighting infection, are hyperactive, causing antibodies secreted by superactivated lymphocytes to turn against the body. This leads to the development of autoimmune diseases, which are characterized by debilitating inflammation and advanced tissue damage. Dr. Veillette’s breakthrough identifies a cascade of molecular reactions involved in this type of damage, providing new therapeutic targets that could be used to reduce attacks on the pancreas in juvenile diabetes, on the kidneys in lupus, and on the joints in rheumatoid arthritis.


This publication is a major milestone for Dr. Veillette, an internationally recognized expert on the identification of molecular mechanisms that control the immune response. Initial findings were published in Nature Immunology in 2001, followed by an article in Nature Cell Biology in 2003. The article slated for publication in the November 2004 issue of Immunity provides genetic evidence of the importance of the molecular mechanism discovered by Dr. Veillette’s team.

More precisely, this discovery links three elements: a receptor (or "sensor") located on the surface of the lymphocytes, known as SLAM; an adaptive protein (or "molecular relay") located in the cell, known as SAP; and FynT, an enzyme that is also located within the cell. Using mice with genetically mutated SLAM, SAP or FynT proteins, Dr. Veillette provided evidence of the importance of links among the three proteins. It should also be noted that SAP protein mutations occur in humans, causing a fatal immune dysfunction known as "X-linked lymphoproliferation" (XLP). Dr. Veillette’s discovery paves the way for the development of SLAM, SAP or FynT inhibitors, which could block excessive immune responses observed in patients with autoimmune diseases.

François Brochu | EurekAlert!
Further information:
http://www.ircm.qc.ca

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>