Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


IRCM scientist demonstrates basic active mechanism of immune-system cells


Major breakthrough in the treatment of autoimmune diseases

In the upcoming issue of Immunity, a highly regarded journal put out by the Cell group, Dr. André Veillette, a scientist at the Institut de recherches cliniques de Montréal (IRCM), and his team will publish the results of a study that could revolutionize the treatment of autoimmune diseases, such as juvenile diabetes, lupus, and rheumatoid arthritis. Contemporary medicine has to date achieved only mixed results in dealing with these diseases, which affect hundreds of thousands of Canadians.

Dr. Veillette’s team has discovered one of the basic mechanisms that control the production of antibodies by immune-system cells known as B lymphocytes or B cells. In subjects with autoimmune diseases, these lymphocytes, which are also normally responsible for fighting infection, are hyperactive, causing antibodies secreted by superactivated lymphocytes to turn against the body. This leads to the development of autoimmune diseases, which are characterized by debilitating inflammation and advanced tissue damage. Dr. Veillette’s breakthrough identifies a cascade of molecular reactions involved in this type of damage, providing new therapeutic targets that could be used to reduce attacks on the pancreas in juvenile diabetes, on the kidneys in lupus, and on the joints in rheumatoid arthritis.

This publication is a major milestone for Dr. Veillette, an internationally recognized expert on the identification of molecular mechanisms that control the immune response. Initial findings were published in Nature Immunology in 2001, followed by an article in Nature Cell Biology in 2003. The article slated for publication in the November 2004 issue of Immunity provides genetic evidence of the importance of the molecular mechanism discovered by Dr. Veillette’s team.

More precisely, this discovery links three elements: a receptor (or "sensor") located on the surface of the lymphocytes, known as SLAM; an adaptive protein (or "molecular relay") located in the cell, known as SAP; and FynT, an enzyme that is also located within the cell. Using mice with genetically mutated SLAM, SAP or FynT proteins, Dr. Veillette provided evidence of the importance of links among the three proteins. It should also be noted that SAP protein mutations occur in humans, causing a fatal immune dysfunction known as "X-linked lymphoproliferation" (XLP). Dr. Veillette’s discovery paves the way for the development of SLAM, SAP or FynT inhibitors, which could block excessive immune responses observed in patients with autoimmune diseases.

François Brochu | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>