Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New data on "mad cow" disease

17.11.2004


A research team at the University of Navarre has detected the presence of the prion protein in the digestive tract of three animal species: the autochthonous Pyrennean cow, in a primate and in rats. This study is the first to describe the exact location of the “healthy” form of the prion (PrPc), a protein necessary for the development of prionic diseases in these three species.



The results obtained by the Navarre researchers provide new data on the propagation of the prion and on the development of encephalopathies through the ingestion of contaminated food. It is important to underline that these discoveries could be extrapolated to other species, including the human.

As is known, the majority of cases of bovine spongiform encephalopathy (BSE) detected in Navarre province in the 2001-2004 period correspond to the Pyrennean cow breed. The pathogen prion, PrPsc, is the cause of the mad cow disease. The research into prions is still scant, although it intensified as a result of the mad cow problem.


Locating the prions – the first phase of the study

Prions are proteins that are the causal agent of transmissible spongiform encephalopathies (TSEs), a group of neurodegenerative illnesses which currently have no cure and which affect both animals and humans. Prionic illnesses are characterised by the accumulation in the brain of the pathogenic form (PrPsc) of the normal protein (PrPc), present in all mammals. In order for the disease to develop and manifest itself, the presence of the PrPc in the host tissues is indispensable. Moreover, in TSEs of infectious origin, the actual pathogenic agent enters the organism. Although there are several possible ways for the pathogen to enter, it has always been suggested that that the principal way is orally, through the ingestion of contaminated food. Once the pathogenic form has penetrated, this propagates and accumulates, transforming the PrPc present. Nevertheless, it is still unknown today how exactly this process occurs, i.e. how the protein manages to penetrate the wall of the digestive tract, make contact with the PrPc, transform it and finally recah the brain, where the damage is carried out. In order to decipher the keys to the process, it is important to know the exact location of the PrPc in the digestive tract, and this is what the research has been aimed at.

Irati Kortabitarte | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>