Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sex versus survival: A tradeoff at geographical range limits

16.11.2004


Northern plants must ’use it or lose it,’ says Queen’s study

A new, Queen’s-led study shows that plants growing in harsh northern climates are losing the ability to reproduce sexually, an evolutionary phenomenon similar to the loss of sight in cave-dwelling fish. "Our genetic analysis shows that northern plant populations acquire mutations that disable sex itself, a trait central to the biology of almost all higher organisms," says Queen’s biologist Christopher Eckert, co-author of the study and an expert in reproductive evolution.

These findings are provocative because they point to the possibility of rapid reproductive evolution in other species at the northern fringes of their range, Dr. Eckert explains. "This is significant because almost all of the designated species at risk in Canada consist of populations at their northern range limit." "Rapid reproductive evolution at the range limit will clearly affect decisions about the management of these marginal populations," he continues. "A shift in how plants reproduce will also greatly affect whether or not they will be able to move with changing climates, especially rapid global warming caused by humans."



Focusing on Decodon verticillatus, a dominant shrub in wetlands throughout eastern North America, a series of studies led by Dr. Eckert show that populations switch from being sexual to totally asexual across the northern limit of the species’ geographical range. This switch leads to northern populations becoming "enormous, genetically homogeneous superclones." By comparing reproduction in natural populations versus a benign greenhouse environment, the research team learned that the reproductive switch is due to genetic factors causing sexual sterility.

These sterility mutations can spread in northern populations because the harsher environment makes sex relatively unsuccessful compared to asexual clonal reproduction (where plants make genetically identical offspring by vegetative budding). This is akin to the evolutionary loss of eyes in cave organisms where a lack of light makes visual stimuli useless. Published in the journal Proceedings of the Royal Society, the paper is co-authored by Queen’s student Kathryn Neville and Queen’s graduate Marcel Dorken (now at Oxford University).

Evidence gathered under the controlled environmental conditions of the Queen’s Phytotron shows that the genes that disable sex in northern populations of Decodon actually improve other aspects of plant function such as survival. Hence, plants growing in cold climates appear to have made an evolutionary "tradeoff" between sexual reproduction and enhanced survival, says Dr. Eckert. The doubled-edged nature of these sterility mutations can cause them to spread quickly in northern populations where sex is not very useful. This shows how complex traits such as sexual reproduction can quickly degenerate and even disappear when they are no longer useful.

Evolutionary biologists have long viewed these so-called vestigial traits – which appear to have degenerated under conditions where they no longer enhance reproductive fitness – as the flip-side of Darwin’s mechanism of evolution by natural selection. "No other theory can explain why organisms have collected these degraded vestigial traits," says Dr. Eckert, noting that in humans an example of a vestigial, or lost trait, is our tailbone. "If our data are borne out by other genetic studies, it means that these complex traits can be eroded very quickly."

Nancy Dorrance | EurekAlert!
Further information:
http://www.queensu.ca

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>