Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sex versus survival: A tradeoff at geographical range limits

16.11.2004


Northern plants must ’use it or lose it,’ says Queen’s study

A new, Queen’s-led study shows that plants growing in harsh northern climates are losing the ability to reproduce sexually, an evolutionary phenomenon similar to the loss of sight in cave-dwelling fish. "Our genetic analysis shows that northern plant populations acquire mutations that disable sex itself, a trait central to the biology of almost all higher organisms," says Queen’s biologist Christopher Eckert, co-author of the study and an expert in reproductive evolution.

These findings are provocative because they point to the possibility of rapid reproductive evolution in other species at the northern fringes of their range, Dr. Eckert explains. "This is significant because almost all of the designated species at risk in Canada consist of populations at their northern range limit." "Rapid reproductive evolution at the range limit will clearly affect decisions about the management of these marginal populations," he continues. "A shift in how plants reproduce will also greatly affect whether or not they will be able to move with changing climates, especially rapid global warming caused by humans."



Focusing on Decodon verticillatus, a dominant shrub in wetlands throughout eastern North America, a series of studies led by Dr. Eckert show that populations switch from being sexual to totally asexual across the northern limit of the species’ geographical range. This switch leads to northern populations becoming "enormous, genetically homogeneous superclones." By comparing reproduction in natural populations versus a benign greenhouse environment, the research team learned that the reproductive switch is due to genetic factors causing sexual sterility.

These sterility mutations can spread in northern populations because the harsher environment makes sex relatively unsuccessful compared to asexual clonal reproduction (where plants make genetically identical offspring by vegetative budding). This is akin to the evolutionary loss of eyes in cave organisms where a lack of light makes visual stimuli useless. Published in the journal Proceedings of the Royal Society, the paper is co-authored by Queen’s student Kathryn Neville and Queen’s graduate Marcel Dorken (now at Oxford University).

Evidence gathered under the controlled environmental conditions of the Queen’s Phytotron shows that the genes that disable sex in northern populations of Decodon actually improve other aspects of plant function such as survival. Hence, plants growing in cold climates appear to have made an evolutionary "tradeoff" between sexual reproduction and enhanced survival, says Dr. Eckert. The doubled-edged nature of these sterility mutations can cause them to spread quickly in northern populations where sex is not very useful. This shows how complex traits such as sexual reproduction can quickly degenerate and even disappear when they are no longer useful.

Evolutionary biologists have long viewed these so-called vestigial traits – which appear to have degenerated under conditions where they no longer enhance reproductive fitness – as the flip-side of Darwin’s mechanism of evolution by natural selection. "No other theory can explain why organisms have collected these degraded vestigial traits," says Dr. Eckert, noting that in humans an example of a vestigial, or lost trait, is our tailbone. "If our data are borne out by other genetic studies, it means that these complex traits can be eroded very quickly."

Nancy Dorrance | EurekAlert!
Further information:
http://www.queensu.ca

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>