Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cucumber Versus Cucumber

15.11.2004


Marine invertebrate called sea cucumber resembles vegetable cucumber by not only shape, but also by some metabolites. The substances produced by the animal can affect the growth of the plant. This study was conducted by Russian biochemists and supported by the RFBR.



Sea cucumbers are cucumber-shaped echinoderms of the genus Cucumaria (Latin designation for vegetable cucumber sounds similar - Cucumis) having a flexible body with tentacles surrounding the mouth. Very recently, the Russian researchers from Far East have discovered that certain substances produced by Cucumaria are similar to plant glycosides by the chemical structure and can inhibit the growth of roots of cucumber sprouts. The biochemists analyzed published data on the properties of cucumariosides (glycosides produced by Cucumaria) and concluded that their effects on animal and plant cells have similar chemical mechanism. These substances actively interact with the cell membrane, which accounts for their ability to act as antifungal and antitumour agents and also for their toxic effects on some fishes (destruction of blood cells). Besides, the group of cucumariosides includes some immunostimulating and radioprotective agents. Techniques for the extraction of glycosides from the body of sea cucumbers and for their fractionation are already developed and tested.

The Russian biochemists placed cucumber seeds onto wet tissues to germinate and treated the sprouts with solutions of various glycosides originated from Cucumaria. Some cucumariosides acted like growth inhibitors of plant origin and suppressed the growth of cucumber roots. The fact that the plant responded to the biologically active agent of animal origin is very curious. The researchers explain this effect by the ability of cucumariosides for interacting with membrane enzymes of plant and animal cells in the same way. At a low concentration of cucumariosides, the enzymes become inactive. At a higher concentration of these glycosides, the membrane becomes permeable, which causes the leakage of ions (primarily, potassium) and small molecules from the cell. This accounts for the ability of glycosides to suppress the growth of microflora and embryos of sea urchins (echinoderms, relations of sea
cucumbers).



The biochemists revealed that cucumariosides being strongest inhibitors of root growth have molecules with only one reactive group formed of sulphur and oxygen, and least active cucumariosides that produced very insignificant effect on the root growth have three reactive groups in each molecule. This discovery has important implications for biotechnology, where substances with certain fixed properties are needed.

Edible sea cucumbers called trepangs (genus Holothuria) inhabit the same areas of the southern Pacific and Indian oceans as Cucumaria and feed on benthonic animals. Being scared, trepangs can drop the intestine together with the lungs, which later regenerate like any other lost part of the body. Trepangs are dried or smoked for use as an ingredient in soup.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>