Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA scientists uncork fountain of youth for HIV-fighting cells

15.11.2004


Protein may help immune system fend off virus



UCLA scientists have shown that a protein called telomerase prevents the premature aging of the immune cells that fight HIV, enabling the cells to divide indefinitely and prolong their defense against infection. Published Nov. 15 in the Journal of Immunology, the research suggests a future therapy for boosting the weakened immune systems of HIV-positive people.

Every cell contains a tiny cellular clock called a telomere, which shortens each time the cell splits in two. Located at the end of the cell’s chromosome, the telomere limits the number of times a cell can divide. "Immune cells that fight HIV are under constant strain to divide in order to continue performing their protective functions. This massive amount of division shortens these cells’ telomeres prematurely," explained Dr. Rita Effros, Plott Chair in Gerontology and professor of pathology and laboratory medicine at the David Geffen School of Medicine at UCLA. "So the telomeres of a 40-year-old person infected with HIV resemble those of a healthy 90-year-old person."


Most scientists agree that telomeres evolved to avert the rampant cell growth that often leads to cancer. Yet many cancers continue growing because they undergo genetic changes and start to produce telomerase, which regenerates their cells’ telomeres.

Effros and first author Mirabelle Dagarag, Ph.D., hypothesized that harnessing telomerase’s power over telomeres may provide a potent weapon in helping the AIDS patient’s exhausted immune system defend itself against HIV. The researchers extracted immune cells from the blood of HIV-infected persons and tested what would happen if telomerase remained permanently switched on in the cell. "By exploiting telomerase’s growth influence on telomeres, we thought we might be able to keep the immune cells youthful and active as they replicated under attack," said Dagarag, a postgraduate researcher. "We used gene therapy to boost the immune cell’s telomerase and then exposed the cell to HIV."

What Dagarag and Effros saw delighted them.

"We found that the immune cells could divide endlessly," said Effros, a member of the UCLA AIDS Institute. "They grew at a normal rate and didn’t show any chromosomal abnormalities that might lead to cancer." "We also saw that telomerase stabilized the telomere length," added Dagarag. "The telomere didn’t shorten each time the cell divided, which left the cell able to vigorously battle HIV much longer."

The UCLA work is the first to prove that maintaining telomerase activity in immune cells from HIV-infected persons prevents telomeres from shortening. "This is the first step toward developing other telomerase-based strategies for controlling HIV disease," said Dagarag. "Increasing the amount of telomerase in certain immune cells may one day hold the key to treating AIDS." "To battle HIV infection effectively, we must strengthen the human immune system -- not just suppress the virus as current drugs do," said Effros. "We need a two-pronged approach to attack the disease from both sides of the medical equation."

Effros and the Geron Corporation, which collaborated on this study, are also testing several non-genetic methods of activating telomerase as potential treatments for persons infected with HIV.

The UCLA team’s approach could provide the foundation for immunotherapy as a treatment for HIV and related diseases that rely on lasting protection by the same immune cells. These include cancer and latent cytomegalovirus, a viral infection that often strikes organ-transplant patients and persons with AIDS.

Elaine Schmidt | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>