Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA scientists uncork fountain of youth for HIV-fighting cells

15.11.2004


Protein may help immune system fend off virus



UCLA scientists have shown that a protein called telomerase prevents the premature aging of the immune cells that fight HIV, enabling the cells to divide indefinitely and prolong their defense against infection. Published Nov. 15 in the Journal of Immunology, the research suggests a future therapy for boosting the weakened immune systems of HIV-positive people.

Every cell contains a tiny cellular clock called a telomere, which shortens each time the cell splits in two. Located at the end of the cell’s chromosome, the telomere limits the number of times a cell can divide. "Immune cells that fight HIV are under constant strain to divide in order to continue performing their protective functions. This massive amount of division shortens these cells’ telomeres prematurely," explained Dr. Rita Effros, Plott Chair in Gerontology and professor of pathology and laboratory medicine at the David Geffen School of Medicine at UCLA. "So the telomeres of a 40-year-old person infected with HIV resemble those of a healthy 90-year-old person."


Most scientists agree that telomeres evolved to avert the rampant cell growth that often leads to cancer. Yet many cancers continue growing because they undergo genetic changes and start to produce telomerase, which regenerates their cells’ telomeres.

Effros and first author Mirabelle Dagarag, Ph.D., hypothesized that harnessing telomerase’s power over telomeres may provide a potent weapon in helping the AIDS patient’s exhausted immune system defend itself against HIV. The researchers extracted immune cells from the blood of HIV-infected persons and tested what would happen if telomerase remained permanently switched on in the cell. "By exploiting telomerase’s growth influence on telomeres, we thought we might be able to keep the immune cells youthful and active as they replicated under attack," said Dagarag, a postgraduate researcher. "We used gene therapy to boost the immune cell’s telomerase and then exposed the cell to HIV."

What Dagarag and Effros saw delighted them.

"We found that the immune cells could divide endlessly," said Effros, a member of the UCLA AIDS Institute. "They grew at a normal rate and didn’t show any chromosomal abnormalities that might lead to cancer." "We also saw that telomerase stabilized the telomere length," added Dagarag. "The telomere didn’t shorten each time the cell divided, which left the cell able to vigorously battle HIV much longer."

The UCLA work is the first to prove that maintaining telomerase activity in immune cells from HIV-infected persons prevents telomeres from shortening. "This is the first step toward developing other telomerase-based strategies for controlling HIV disease," said Dagarag. "Increasing the amount of telomerase in certain immune cells may one day hold the key to treating AIDS." "To battle HIV infection effectively, we must strengthen the human immune system -- not just suppress the virus as current drugs do," said Effros. "We need a two-pronged approach to attack the disease from both sides of the medical equation."

Effros and the Geron Corporation, which collaborated on this study, are also testing several non-genetic methods of activating telomerase as potential treatments for persons infected with HIV.

The UCLA team’s approach could provide the foundation for immunotherapy as a treatment for HIV and related diseases that rely on lasting protection by the same immune cells. These include cancer and latent cytomegalovirus, a viral infection that often strikes organ-transplant patients and persons with AIDS.

Elaine Schmidt | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>