Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA scientists uncork fountain of youth for HIV-fighting cells

15.11.2004


Protein may help immune system fend off virus



UCLA scientists have shown that a protein called telomerase prevents the premature aging of the immune cells that fight HIV, enabling the cells to divide indefinitely and prolong their defense against infection. Published Nov. 15 in the Journal of Immunology, the research suggests a future therapy for boosting the weakened immune systems of HIV-positive people.

Every cell contains a tiny cellular clock called a telomere, which shortens each time the cell splits in two. Located at the end of the cell’s chromosome, the telomere limits the number of times a cell can divide. "Immune cells that fight HIV are under constant strain to divide in order to continue performing their protective functions. This massive amount of division shortens these cells’ telomeres prematurely," explained Dr. Rita Effros, Plott Chair in Gerontology and professor of pathology and laboratory medicine at the David Geffen School of Medicine at UCLA. "So the telomeres of a 40-year-old person infected with HIV resemble those of a healthy 90-year-old person."


Most scientists agree that telomeres evolved to avert the rampant cell growth that often leads to cancer. Yet many cancers continue growing because they undergo genetic changes and start to produce telomerase, which regenerates their cells’ telomeres.

Effros and first author Mirabelle Dagarag, Ph.D., hypothesized that harnessing telomerase’s power over telomeres may provide a potent weapon in helping the AIDS patient’s exhausted immune system defend itself against HIV. The researchers extracted immune cells from the blood of HIV-infected persons and tested what would happen if telomerase remained permanently switched on in the cell. "By exploiting telomerase’s growth influence on telomeres, we thought we might be able to keep the immune cells youthful and active as they replicated under attack," said Dagarag, a postgraduate researcher. "We used gene therapy to boost the immune cell’s telomerase and then exposed the cell to HIV."

What Dagarag and Effros saw delighted them.

"We found that the immune cells could divide endlessly," said Effros, a member of the UCLA AIDS Institute. "They grew at a normal rate and didn’t show any chromosomal abnormalities that might lead to cancer." "We also saw that telomerase stabilized the telomere length," added Dagarag. "The telomere didn’t shorten each time the cell divided, which left the cell able to vigorously battle HIV much longer."

The UCLA work is the first to prove that maintaining telomerase activity in immune cells from HIV-infected persons prevents telomeres from shortening. "This is the first step toward developing other telomerase-based strategies for controlling HIV disease," said Dagarag. "Increasing the amount of telomerase in certain immune cells may one day hold the key to treating AIDS." "To battle HIV infection effectively, we must strengthen the human immune system -- not just suppress the virus as current drugs do," said Effros. "We need a two-pronged approach to attack the disease from both sides of the medical equation."

Effros and the Geron Corporation, which collaborated on this study, are also testing several non-genetic methods of activating telomerase as potential treatments for persons infected with HIV.

The UCLA team’s approach could provide the foundation for immunotherapy as a treatment for HIV and related diseases that rely on lasting protection by the same immune cells. These include cancer and latent cytomegalovirus, a viral infection that often strikes organ-transplant patients and persons with AIDS.

Elaine Schmidt | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>