Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford study reveals that cells linked to asthma and eczema also help cure deadly illness in mice

15.11.2004


Mast cells are immune cells known mostly for their unwanted effects: they cause the wheezing of asthma, the itching of eczema, the sneezing and runny nose of hay fever and, in extreme cases, the life-threatening shock of anaphylaxis. But researchers at the Stanford University School of Medicine have found that these cells also have some very beneficial effects.



Stephen Galli, MD, the Mary Hewitt Loveless, MD, Professor and chair of pathology, and his colleagues have shown for the first time that mast cells can provide protection from a potentially deadly condition known as sepsis by destroying a molecule that contributes to the pathology and death associated with this bacterial infection. Their results are to be published in the Nov. 14 advance online edition of Nature. The first authors, Marcus Maurer, MD, and Jochen Wedemeyer, MD, were postdoctoral fellows in Galli’s laboratory during the study.

"What we have uncovered in this study is a new role for the mast cell, which is to limit the amount of damage caused by endothelin-1, a molecule that is produced in high amounts by the body during severe sepsis, as well as in association with other disorders," said Galli. Sepsis is a severe illness caused by overwhelming infection of toxin-producing bacteria in the bloodstream. The effects of sepsis in humans include a high fever, hyperventilation and diarrhea and can be life threatening, especially in patients with other medical problems.


During some infections, endothelin-1 levels can go very high, causing extreme dilation of the veins and contributing to some of the severe symptoms of sepsis. At the start of the study, the scientists already knew that, in cell culture, mast cells are activated by endothelin-1. In turn, the mast cells also can produce endothelin-1 and break it down. "However, it was not possible to guess what the net effect of the mast cells on the endothelin system would be, because mast cells can both degrade it and produce it," said Galli.

To see the mast cells in action rather than in a culture dish, senior research scientist Mindy Tsai, DMSc, helped produce genetically engineered mast cells that could or could not respond normally to endothelin-1. The researchers could then selectively transplant these mast cells to mice that lacked the cells and thus see how it affected the ability to respond to endothelin-1 or bacterial infection.

Most of the mice without mast cells died as a result of bacterial infection. But survival during sepsis was greatly improved in the mice with mast cells that could respond normally to endothelin-1. The scientists found that endothelin-1 can activate mast cells in the mice and, once triggered, the cells produced another protein that breaks down endothelin-1, reducing its toxic effects. In other words, said Galli, the mast cells help to restore normal physiological balance in the mice with high levels of endothelin-1.

High levels of endothelin-1 have been reported in a number of human diseases, such as high blood pressure, pulmonary hypertension, asthma, congestive heart failure, renal failure and gastric ulcers, said Galli. Moreover, mast cells have been implicated in many of the same disorders. "Although we have studied a bacterial infection as a kind of first test case, we hope to be able to develop models that would allow us to study this phenomenon in other diseases as well," he said. "We are too early in this work to see clearly what the therapeutic potential will be."

Other scientists have considered the possibility of eliminating mast cells as a possible treatment for diseases such as asthma. However, Galli said his team’s results offer an example of a beneficial function that would be lost if those cells were eliminated. "It’s reassuring that evolution has produced cells that under some circumstances have significant benefit, even though when they are activated inappropriately, such as in asthma, they produce harm," Galli said.

Interestingly, he said, a component of a particular snake venom, that of the Israeli mole viper, contains a compound similar to endothelin-1. Animals bitten by the snake develop some effects that are similar to those observed in sepsis. It is possible that mast cells also counteract this venom component, breaking it down and reducing the toxicity of the protein. Galli’s group is looking at this now.

Other Stanford researchers who contributed to this work are Martin Metz, Adrian Piliponsky and Davavani Chatterjea. The National Institutes of Health funded the study.

Mitzi Baker | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>