Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Lyme disease receptor identified in tick guts


Researchers at Yale School of Medicine have identified a Lyme disease receptor called TROSPA that is used by disease agents to invade ticks.

Lyme disease, the most common tick-borne disease in the United States, is caused by spirochete bacteria Borrelia burgdorferi, which also cause arthritis in humans. The purpose of the study, published November 12 in the journal Cell, was to identify how Lyme disease pathogens survive inside ticks.

"We identified a receptor inside the tick gut that the spirochete bacteria use to colonize or invade ticks," said principal investigator Erol Fikrig, M.D., professor of internal medicine/rheumatology and in the Section of Microbial Pathogenesis, and Department of Epidemiology and Public Health at Yale School of Medicine. "When we eliminated or blocked the receptor in the ticks, they were no longer able to carry the Lyme disease agent Borellia burgforferi."

"This opens up potential new avenues to disrupt the Borellia’s life cycle and offers strategies for improving diagnosis and treatment of Lyme disease," Fikrig added.

To characterize the Lyme disease receptor, the team cloned the gene for the receptor from ticks. After they expressed the purified receptor gene, they showed that the Lyme disease agent Borellia burgforferi binds to the receptor. "When we blocked the receptors with antibodies or when we used RNA interference to knock the receptor out of the ticks, they no longer carried Borellia burgforferi," said Fikrig.

"We are excited to learn more about the life cycle of this important pathogen," Fikrig added. "This information can also be used to study other vector-borne diseases such as West Nile virus and Malaria," Fikrig added.

Other authors on the study included Utpal Pal, Xin Li, Tian Wang, Ruth R. Montgomery, Nandhini Ramamoorthi, Aravinda M. deSilva, Fukai Bao, Xiaofeng Yang, Marc Pypaert, Deepti Pradhan, Fred S. Kantor, Sam Telford and John F. Anderson.

Karen N. Peart | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht How the African clawed frog got an extra pair of genes: Whole genome sequence reveals evolutionary history of Xenopus laevis
27.10.2016 | Hokkaido University

nachricht Mitochondria control stem cell fate
27.10.2016 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The gene of autumn colours

27.10.2016 | Life Sciences

Polymer scaffolds build a better pill to swallow

27.10.2016 | Life Sciences

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>