Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nature-of-Water Question Makes Another Splash

12.11.2004


Recent experimental results threatened to overturn 100 years of scientific research into the mysterious nature of liquid water, but new experimental results say ... not so fast! A team of scientists with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory and the University of California, Berkeley, has shown that the energy required to “measurably distort” the molecular structure of liquid water is the same as the energy required to melt ice. This could explain why a study last spring out of Stanford University seemed to contradict what was has long been believed about the molecular structure of liquid water.



Using the ultrabright x-ray beams at Berkeley Lab’s Advanced Light Source and a unique experimental technique of their own, the Berkeley researchers, led by chemist Richard Saykally, found that 1.5 kcal/mol is the average energy required to distort or bend a hydrogen bond in both solid and liquid water. The Stanford measurement of these hydrogen bond distortions was based on theoretical calculations rather than experiments. As a result, it appeared that most of the molecules in liquid water only interact with two other water molecules, as opposed to the traditional picture in which nearly every water molecule interacts with four other water molecules.

“Our results certainly do not disprove the conclusions of the elegant Stanford experiment, but we do present an alternative way to interpret their experiments that is consistent with the standard view of liquid water structure,” says Saykally, who holds joint appointments with Berkeley Lab’s Chemical Sciences Division and UC Berkeley’s Chemistry Department.


The results of the Berkeley experiments are reported in the October 29 issue of the journal Science. Saykally is principal author of the paper. The other authors are Jared Smith, Christopher Cappa, Kevin Wilson, Benjamin Messer and Ronald Cohen, who all hold joint appointments with Berkeley Lab and UC Berkeley.

Water is the most abundant liquid on our planet. It covers 70 percent of the Earth’s surface and makes up 60 percent of the human body. Blood may be thicker than water, but not by much, since 90 percent of it is water. Despite water’s ubiquitous presence in our lives, it remains a mystery. Whereas most substances contract when they solidify, water expands, making it less dense as a solid than as a liquid. Our lives depend upon liquid water but, given its light molecular weight, water at room temperature should be a gas.

The tradition view of liquid water holds that every water molecule connects with four nearest neighbors to form a network of tetrahedrons. The key to understanding the strange but vital properties of liquid water is to fully understand its structure. Consisting of two hydrogen atoms joined to a single atom of oxygen, water is one the smallest and most simple of all molecules, but it is able to form unique kinds of chemical bonds with other water molecules. A single water molecule is V-shaped, but because the oxygen atom is more electronegative than the hydrogen atoms, the electrons in the molecule tend to gather towards the oxygen end, creating a slightly negative pole there and a slightly positive pole on the hydrogen side. The polarity of each water molecule results in a weak attraction between it and other water molecules, called a hydrogen bond.

In the traditional scientific picture of liquid water, every individual water molecule forms four hydrogen bonds -- two that are electron acceptors and two that are electron donors – through which it connects to its four nearest neighbors. The result is a network of tetrahedrons. These are the same bonds that exist when water is in the solid ice state. Under the standard view of water, when ice melts, only about 10 percent of the tetrahedral hydrogen bonds are broken. This retention of intact hydrogen bonds has long been thought to be the source of liquid water’s unusual properties.

As Saykally once explained in the film by David Suzuki, The Sacred Balance, “The way I like to think about it, it’s like water has two hands and two feet. The hands of water are the hydrogens that are more or less positively charged, and the feet are electron pairs that are the negative part associated with oxygen. And these two hands want to grab the feet of two other water molecules, and the two feet want to interact with the hands of two other water molecules. So in each water molecule, hydrogen bonds to four others, making very extensive networks in the liquid."

However, in April, scientists at Stanford University reported a series of tests, using x-ray absorption spectroscopy and x-ray Raman scattering techniques, that indicated a radically different molecular arrangement for water. In their tests, they found that in room-temperature liquid water, more than 80 percent of the hydrogen bonds between water molecules were broken. On the average, they found each liquid water molecule formed only two hydrogen bonds -- one electron donor and one electron acceptor. From this they concluded that in the liquid state, water molecules form a network of rings or chains, rather than the tetrahedrons formed when water becomes ice.

“Experimental measurements, however, necessarily define hydrogen bonds in terms of the particular technique being used to make them,” says Saykally. He and his colleagues used a different technique, called total electron yield near-edge x-ray absorption fine structure (TEY-NEXAFS) of liquid water microjets, in which the spectrum of liquid water is measured over a wide range of temperatures. This gave them the energy that would be required to distort the hydrogen bonds in liquid water enough to yield a picture of water’s structure similar to what was found at Stanford. They used this new technique to measure the spectra of normal and supercooled water between minus-27 and 15 degrees Celsius. “We found that the Stanford results arise from from relatively small distortions of an ice-like hydrogen bond,” Saykally says, “and that the same results could be expected even for nearly perfect tetrahedral configurations in the liquid water molecules.”

Because liquid water plays such a critical role in life and a great many other physical and chemical processes, scientists will continue to study its structure and how that structure can change when liquid water interacts with something else. This latest round of experiments is not the final word, but another clue towards solving what continues to be a scientific enigma.

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>